scholarly journals The Influence of Exposure Energy Density on Porosity and Microhardness of the SLM Additive Manufactured Elements

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2304 ◽  
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Janusz Mierzyński

Selective laser melting (SLM) is an additive manufacturing technique. It allows elements with very complex geometry to be produced using metallic powders. A geometry of manufacturing elements is based only on 3D computer-aided design (CAD) data. The metal powder is melted selectively layer by layer using an ytterbium laser. This paper contains the results of porosity and microhardness analysis made on specimens manufactured during a specially prepared process. Final analysis helped to discover connections between changing hatching distance, exposure speed and porosity. There were no significant differences in microhardness and porosity measurement results in the planes perpendicular and parallel to the machine building platform surface.

Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Janusz Mierzyński

Selective Laser Melting (SLM) is an additive manufacturing technique. It allows to produce elements with very complex geometry using metallic powders. A geometry of manufacturing elements bases only on 3D CAD data. The metal powder is melt selectively layer by layer using ytterbium laser. The paper contains results of porosity and microhardness analysis made on specimens which were manufactured during specially prepared process. Final analysis helped to discover connections between changing hatching distance, exposure speed and porosity. There was no significant differences in microhardness and porosity measurement results in the planes: perpendicular and parallel to the machine building platform surface.


Author(s):  
Haichao Wang ◽  
Jie Zhang ◽  
Xiaolong Zhang ◽  
Changwei Ren ◽  
Xiaoxi Wang ◽  
...  

Feature recognition is an important technology of computer-aided design/computer-aided engineering/computer-aided process planning/computer-aided manufacturing integration in cast-then-machined part manufacturing. Graph-based approach is one of the most popular feature recognition methods; however, it cannot still solve concave-convex mixed interacting feature recognition problem, which is a common problem in feature recognition of cast-then-machined parts. In this study, an oriented feature extraction and recognition approach is proposed for concave-convex mixed interacting features. The method first extracts predefined features directionally according to the rules generated from attributed adjacency graphs–based feature library and peels off them from part model layer by layer. Sub-features in an interacting feature are associated via hints and organized as a feature tree. The time cost is reduced to less than [Formula: see text] by eliminating subgraph isomorphism and matching operations. Oriented feature extraction and recognition approach recognizes non-freeform-surface features directionally regardless of the part structure. Hence, its application scope can be extended to multiple kinds of non-freeform-surface parts by customizing. Based on our findings, implementations on prismatic, plate, fork, axlebox, linkage, and cast-then-machined parts prove that the proposed approach is applicable on non-freeform-surface parts and effectively recognize concave-convex mixed interacting feature in various mechanical parts.


Author(s):  
Александр Афанасьев ◽  
Afanasyev Afanasyev ◽  
Сергей Бригаднов ◽  
Sergey Brigadnov

The actual task in the field of computer-aided design of machine-building objects is to increase the level of automation of structural-parametric analysis of design solutions due to the repetition of their use, reducing the number of design operations and ensuring the corresponding competencies of designers. Developed methods and algorithms should ensure the acquisition of the necessary competencies for the designer for successful project activities in the field of computer-aided design, increasing the effectiveness of training. The system of analysis of design solutions should improve the quality of design solutions implemented in CAD KOMPAS-3D. In this paper, an overview of methods, systems and tools for analyzing design solutions implemented in the CAD-3D environment. The main features of such systems are described, their main disadvantages are identified: the lack of functions for determining non-optimal sequences of design operations, the inability to automatically rebuild a three-dimensional model of a machine-building product on the basis of analysis of the design model tree. A complex system for the analysis of project solutions and the training of a designer was developed and implemented, based on methods, models and algorithms for analysis and adaptive learning. The results of a computational experiment are presented, on the basis of which it can be concluded that the use of developed software enhances the efficiency and quality of the designer's training in the processes of constructing three-dimensional solid-state machine-building products in CAD KOMPAS-3D.


2016 ◽  
Vol 22 (2) ◽  
pp. 330-337 ◽  
Author(s):  
Changhui Song ◽  
Yongqiang Yang ◽  
Yunda Wang ◽  
Jia-kuo Yu ◽  
Di Wang

Purpose This paper aims to achieve rapid design and manufacturing of personalized total knee femoral component. Design/methodology/approach On the basis of a patient’s bone model, a matching personalized knee femoral component was rapidly designed with the help of computer-aided design method, then manufactured directly and rapidly by selective laser melting (SLM). Considered SLM as manufacturing technology, CoCrMo-alloyed powder that meets ASTM F75 standard is made of femoral component under optimal processing parameters. The feasibility of SLM forming through conducting experimental test of mechanical properties, surface roughness, biological corrosion resistance was analyzed. Findings The result showed that the tensile strength, yield strength, hardness and biological corrosion resistance of CoCrMo-alloyed personalized femoral component fulfill knee joint prosthesis standard through post-processing. Originality/value Traditional standardized prosthesis implantation manufacturing approach was changed by computer-aided design and personalized SLM direct manufacturing, and provided a new way for personalized implanted prosthesis to response manufacturing rapidly.


Author(s):  
Roby Lynn ◽  
Mahmoud Dinar ◽  
Nuodi Huang ◽  
James Collins ◽  
Jing Yu ◽  
...  

Direct digital manufacturing (DDM) is the creation of a physical part directly from a computer-aided design (CAD) model with minimal process planning and is typically applied to additive manufacturing (AM) processes to fabricate complex geometry. AM is preferred for DDM because of its minimal user input requirements; as a result, users can focus on exploiting other advantages of AM, such as the creation of intricate mechanisms that require no assembly after fabrication. Such assembly free mechanisms can be created using DDM during a single build process. In contrast, subtractive manufacturing (SM) enables the creation of higher strength parts that do not suffer from the material anisotropy inherent in AM. However, process planning for SM is more difficult than it is for AM due to geometric constraints imposed by the machining process; thus, the application of SM to the fabrication of assembly free mechanisms is challenging. This research describes a voxel-based computer-aided manufacturing (CAM) system that enables direct digital subtractive manufacturing (DDSM) of an assembly free mechanism. Process planning for SM involves voxel-by-voxel removal of material in the same way that an AM process consists of layer-by-layer addition of material. The voxelized CAM system minimizes user input by automatically generating toolpaths based on an analysis of accessible material to remove for a certain clearance in the mechanism's assembled state. The DDSM process is validated and compared to AM using case studies of the manufacture of two assembly free ball-in-socket mechanisms.


Author(s):  
E.T. Agaev ◽  
◽  
A.Yu. Bekmeshov ◽  

The article discusses the method of improving the quality of computer-aided design of machine-building products based on the introduction of the concept of 3D drawing. A comparative analysis of the application of a 3D drawing and the use of a standard flat drawing for the manufacture of machine-building profile products on modern CNC machines is given. The 3D drawings of the products are developed in the SolidWorks software environment. Based on the analysis, it is concluded that the use of 3D drawings in compliance with their correct representation in computer-aided design systems will reduce the time for the manufacture of relevant parts.


Author(s):  
E.V. Krukhmalev ◽  
◽  
V.V. Panchuk ◽  

The article highlights issues related to factors that affect the introduction of computer-aided design (CAD) systems in modern machine-building industries. The purpose of the work is to determine the main limitations and possibilities of using CAD in production and to consider the main trends in the development of system solutions for mechanical engineering problems. The theoretical basis of the work is data analysis and analytical study of the current state of proposals for CAD solutions. Electronic modeling systems allow not only to optimize the production process, reduce costs, but also are indispensable requirements for the competitiveness of modern engineering products on the world market. They allow you to carry out operational, remote interaction on the development and production of products, bringing it to the international market. Despite the variety of possibilities offered by CAD solutions from various companies and vendors, the request for its implementation by enterprises is very limited. The crisis state of the economy and industrial production is also not an incentive to implement such solutions. In this regard, it is necessary, on the one hand, to study in detail the evaluation of the effectiveness of implementing CAD technologies, and on the other hand - the most flexible software products that are adapted to the real capabilities and requirements of a particular enterprise, production process, and final product.


Author(s):  
Ye Li ◽  
Matthew C. Frank

This paper presents a method for determining feasible axes of rotation for setup planning, based on the visibility of a polyhedral model. The intent of this work was to develop a feature-free approach to setup planning, with the specific focus on multi-axis machine setups. Visibility mapping can provide a quantitative evaluation of a surface, a feature or an entire part model; however, the next step is to use this information for process planning. In this paper, we present an approach of using a visibility map to evaluate axes of rotation that could be used in an indexer-type setup on a machine tool. Instead of using expensive and complicated multi-axis machining, it may be feasible to machine using multiple three-axis toolpaths if a single axis of rotation can be used to rotate the part through the minimum set of orientations. An algorithm is presented that is capable of processing visibility information from a polyhedral model; hence, the method is generic and does not require feature detection. As such, the work is applicable to a variety of applications; in particular for subtractive rapid prototyping where complex geometry may not contain recognizable features.


Sign in / Sign up

Export Citation Format

Share Document