Construction by Contour Crafting using sulfur concrete with planetary applications

2016 ◽  
Vol 22 (5) ◽  
pp. 848-856 ◽  
Author(s):  
Behrokh Khoshnevis ◽  
Xiao Yuan ◽  
Behnam Zahiri ◽  
Jing Zhang ◽  
Bin Xia

Purpose This paper aims to report on the experiments with the Contour Crafting Automated Construction process using sulfur concrete as the choice of construction material. Design/methodology/approach Several experiments have been performed at centimeter and meter scales. A finite element analysis simulation model for the behavior of sulfur concrete-based structures has been developed. Experimental results were compared with the results of simulation. Findings Sulfur concrete has numerous terrestrial applications and is potentially an ideal construction material for planetary construction. Originality/value Experimental samples of sulfur concrete were fabricated using a novel mixer/extrusion system. The mechanism was proven to be durable and stable after more than 500 h of work.

2016 ◽  
Vol 13 (6) ◽  
pp. 487-493
Author(s):  
Zhongwei Li ◽  
Xiaochuan Yu

Purpose A new beam-column ultimate strength calculation method has been developed and compared with nonlinear finite element analysis by ANSYS and ABAQUS. Design/methodology/approach A computer code ULTBEAM2 based on this method has been used for one and three span beam-columns with I-shaped cross-section under axial compression. Findings This paper studies the ultimate strength of beam-columns with various initial deflections of different shapes and magnitudes. Originality/value The comparison of ULTBEAM2 and finite element analysis shows good agreement for all cases with different initial deflections.


Author(s):  
Noboru Niguchi ◽  
Katsuhiro Hirata

Purpose – Early magnetic-geared motors have a high transmission torque density. However, the torque due to the coil is low because the permanent magnets in the stator become a large magnetic resistance when the current is applied to the coil. The purpose of this paper is to propose magnetic-geared motors which have a high transmission torque density and torque due to the coil. In addition, the proposed magnetic-geared motors are compared with past magnetic-geared motors and the effectiveness is verified by using finite element analysis. Design/methodology/approach – A new magnetic-geared motor which has permanent magnets in the stator slot are proposed. The torque due to the coil increases by removing permanent magnets at the tip of the stator of past magnetic-geared motors. The permanent magnets placed in the stator slots are all magnetized to the outward direction and then the stator teeth are all magnetized to the inward direction. The maximum transmission torque and torque constant are compared. Findings – The proposed magnetic-geared motor has a slightly smaller maximum transmission torque than the early magnetic-geared motors. However, the maximum transmission torque of the proposed magnetic-geared motor is high enough for practical uses. The torque due to the coils is higher than the early magnetic-geared motors. Originality/value – The proposed magnetic-geared motor has originalities in its structure, especially in the permanent magnets in the stator slots.


Author(s):  
Mohammad Hossain Mohammadi ◽  
Tanvir Rahman ◽  
David Lowther

Purpose This paper aims to propose a numerical methodology to reduce the number of computations required to optimally design the rotors of synchronous reluctance machines (SynRMs) with multiple barriers. Design/methodology/approach Two objectives, average torque and torque ripple, have been simulated for thousands of SynRM models using 2D finite element analysis. Different rotor topologies (i.e. number of flux barriers) were statistically analyzed to find their respective design correlation for high average torque solutions. From this information, optimal geometrical constraints were then found to restrict the design space of multiple-barrier rotors. Findings Statistical analysis of two considered SynRM case studies demonstrated a design similarity between the different number of flux barriers. Upon setting the optimal geometrical constraints, it was observed that the design space of multiple-barrier rotors reduced by more than 56 per cent for both models. Originality/value Using the proposed methodology, optimal geometrical constraints of a multiple-barrier SynRM rotor can be found to restrict its corresponding design space. This approach can handle the curse of dimensionality when the number of geometric parameters increases. Also, it can potentially reduce the number of initial samples required prior to a multi-objective optimization.


2019 ◽  
Vol 30 (3) ◽  
pp. 1427-1440 ◽  
Author(s):  
T. Barbaryan ◽  
S. Hoseinzadeh ◽  
P.S. Heyns ◽  
M.S. Barbaryan

Purpose This study aims to develop a new design for the fluid-safety valve to make it more environmentally friendly. Design/methodology/approach Computational fluid dynamics is carried out to analyse the behaviour of flow in both traditional and new safety valves. Findings The possibility of failure in the new design under the maximum allowable working pressure is analysed using finite element analysis. Originality/value Investigating a new low-fluid pressure safety valve design.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
Atif Zahid ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Irfan Sami ◽  
Wasiq Ullah ◽  
...  

A dual mover yokeless multi-tooth (DMYMT) permanent magnet flux switching motor (PM-FSM) design is presented in this article for ropeless elevator applications. The excitation sources, including a field winding and permanent magnet, are on the short mover in the proposed design structure, whereas the stator is a simple slotted iron core, thus reducing the vertical transportation system cost. The operational principle of the proposed DMYMT in PM-FSM is introduced. The proposed dual mover yokeless multi-tooth Permanent Magnet Flux Switching Motor is analyzed and compared for various performance parameters in a Finite Element Analysis package. The proposed machine has high thrust force and cost-effectiveness compared to conventional dual permanent magnet motor. Finally, this paper also develops an analytical model for the proposed structure, validated by comparing it with Finite Element Analysis simulation results. Results show good agreement between analytical prediction and Finite Element Analysis results.


2013 ◽  
Vol 804 ◽  
pp. 320-324
Author(s):  
Xiang Zan Xie

This paper adopts universal finite element calculation software to carry out finite element analysis for Tianerya trench-buried inverted siphon. Researching variation law of the inverted siphons stress and displacement in construction process and operational process. The calculation results further shown design schemes rationality and safety. The analysis results provide a certain reference for design of trench-buried inverted siphon structure.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


Author(s):  
Anthony V. Viviano ◽  
Daniel H. Suchora ◽  
Hazel M. Pierson

Abstract Accumulator systems consist of a series of accumulator rolls, arranged either vertically or horizontally, used in many sheet processing lines for the purpose of storing up strip. Literature on roll design for this particular type of roll is scarce. Much of the present design theory is based on a static analysis assuming the entire contact load from the strip is uniformly distributed over the roll. A previous paper done on this subject focused on modeling the roll using finite element analysis (FEA) assuming this uniform pressure load on the roll. The purpose of this work was to incorporate non-linear contact elements between the strip and the roll body in a finite element analysis. This would allow the software to distribute the load from the strip to the roll, taking into account friction and contact losses. Once accomplished, this load was placed on various roll design configurations, of which included variation in the number of roll stiffeners and the thickness of the roll body and the end plates. These results were also compared to the previous uniform pressure FEA in order to assess the validity of the uniform pressure assumption. Based on these results, a roll design methodology is presented.


2016 ◽  
Vol 33 (8) ◽  
pp. 2421-2447 ◽  
Author(s):  
João Paulo Pascon

Purpose The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio. Design/methodology/approach The material is assumed to be linear elastic, with a Poisson’s ratio varying according to a power law along the thickness direction. The finite element used is a plane beam of any-order of approximation along the axis, and with four transverse enrichment schemes, which can describe constant, linear, quadratic and cubic variation of the strain along the thickness direction. Regarding the constitutive law, five materials are adopted: two homogeneous limiting cases, and three intermediate FG cases. The effect of both finite element kinematics and distribution of Poisson’s ratio on the mechanical response of a cantilever is investigated. Findings In accordance with the scientific literature, the second scheme, in which the transverse strain is linearly variable, is sufficient for homogeneous long (or thin) beams under bending. However, for FG short (or moderate thick) beams, the third scheme, in which the transverse strain variation is quadratic, is needed for a reliable strain or stress distribution. Originality/value In the scientific literature, there are several studies regarding nonlinear analysis of functionally graded materials (FGMs) via finite elements, analysis of FGMs with constant Poisson’s ratio, and geometrically linear problems with gradually variable Poisson’s ratio. However, very few deal with finite element analysis of flexible beams with gradually variable Poisson’s ratio. In the present study, a reliable formulation for such beams is presented.


Sign in / Sign up

Export Citation Format

Share Document