Cu3Sn-microporous copper composite joint for high-temperature die-attach applications

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhen Pan ◽  
Fenglian Sun

Purpose The purpose of this paper is to design a novel die-attach composite joint for high-temperature die-attach applications based on transient liquid phase bonding. Moreover, the microstructure, shear strength, electrical property, thermal conductivity and aging property of the composite joint were investigated. Design/methodology/approach The composite joint was made of microporous copper and Cu3Sn. Microporous copper was immersed into liquid Sn to achieve Sn-microporous copper composite structure for die attachment. By the thermo-compression bonding, the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained after bonding at 350 °C for 5 min under a low pressure of 0.6 MPa. Findings After thermo-compression bonding, the resulting interconnection could withstand a high temperature of at most 676 °C, with the entire Sn transforming into Cu3Sn with high remelting temperatures. A large shear strength could be achieved with the Cu3Sn-microporous copper in the interconnections. The formed bondlines demonstrated a good electrical and thermal conductivity owing to the large existing amount of copper in the interconnections. Furthermore, the interconnection also exhibited excellent reliability under high temperature aging at 300 °C. Originality/value This die-attach composite joint was suitable for power devices operating under high temperatures or other harsh environments.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
F Sun ◽  
Zhen Pan ◽  
Yang Liu ◽  
Xiang Li ◽  
Haoyu Liu ◽  
...  

Purpose The purpose of this paper is to quickly manufacture full Cu3Sn-microporous copper composite joints for high-temperature power electronics applications and study the microstructure evolution and the shear strength of Cu3Sn at different bonding times. Design/methodology/approach In this paper, a novel structure of Cu/composite solder sheet/Cu was designed. The composite solder sheet was made of microporous copper filled with Sn. The composite joint was bonded by thermo-compression bonding under pressure of 0.6 MPa at 300°C. The microstructure evolution and the growth behavior of Cu3Sn at different bonding times were observed by electron microscope and metallographic microscope. The shear strength of the joint was measured by shear machine. Findings At initial bonding stage the copper atoms in the substrate and the copper atoms in the microporous copper dissolved into the liquid Sn. Then the scallop-liked Cu6Sn5 phases formed at the interface of liquid Sn/microporous copper and liquid Sn/Cu substrates. During the liquid Sn changing to Cu6Sn5 phases, Cu3Sn phases formed and grew at the interface of Cu6Sn5/Cu substrates and Cu6Sn5/microporous copper. After that the Cu3Sn phases continued to grow and the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained. The growth rule of Cu3Sn was parabolic growth. The shear strength of the composite joints was about 155 MPa. Originality/value This paper presents a novel full Cu3Sn-microporous copper composite joint with high shear strength for high-temperature applications based on transient liquid phase bonding. The microstructure evolution and the growth behavior of Cu3Sn in the composite joints were studied. The shear strength and the fracture mechanism of the composite joints were studied.


2014 ◽  
Vol 11 (1) ◽  
pp. 7-15
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analyses and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 min for process temperatures approximately 50°C above the melting point of the low temperature constituent. For the shear studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of sinter pastes with different ratios of copper and tin have been assessed. A fixture was designed for high temperature enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, and Cu40Sn pastes showed high shear strengths up to 600°C. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need to apply pressure during processing.


Author(s):  
Sandeep Mallampati ◽  
Liang Yin ◽  
David Shaddock ◽  
Harry Schoeller ◽  
Junghyun Cho

Predominant high melting point solders for high temperature and harsh environment electronics (operating temperatures from 200 to 250°C) are Pb-based systems, which are being subjected to RoHS regulations because of their toxic nature. In this study, high bismuth (Bi) alloy compositions with Bi-XSb-10Cu (X from 10 wt.% to 20 wt.%) were designed and developed to evaluate their potential as high-temperature, Pb-free replacements. Reflow processes were developed to make die-attach samples made out of the cast Bi alloys. In particular, die-attach joints made out of Bi-15Sb-10Cu alloy exhibited an average shear strength of 24 MPa, which is comparable to that of commercially available high Pb solders. These alloy compositions also retained original shear strength even after thermal shock between −55°C and +200°C and high temperature storage at 200°C. Brittle interfacial fracture sometimes occurred along the interfacial NiSb layer formed between Bi(Sb) matrix and Ni metallized surface. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the die-attach assembly, compared to the corresponding bulk alloys. The thermal conductivity of all the Bi-Sb alloys was higher than that of pure Bi. By creating high volume fraction of precipitates in a die-attach joint microstructure, it was feasible to further increase thermal conductivity of this joint to 24 W/m·K, which is three times higher than that of pure Bi (8 W/m·K). Bi-15Sb-10Cu alloy has so far shown the most promising performance as a die-attach material for high temperature applications (operated over 200°C). Hence, this alloy was further studied to evaluate its potential for plastic deformation. Bi-15Sb-10Cu alloy has shown limited plastic deformation in room temperature tensile testing, in which premature fracture occurred via the cracks propagated on the (111) cleavage planes of rhombohedral crystal structure of the Bi(Sb) matrix. The same alloy has, however, shown up to 7% plastic strain under tension when tested at 175°C. The cleavage planes, which became oriented at smaller angles to the tensile stress, contributed to improved plasticity in the high temperature test.


2018 ◽  
Vol 140 (1) ◽  
Author(s):  
Sandeep Mallampati ◽  
Liang Yin ◽  
David Shaddock ◽  
Harry Schoeller ◽  
Junghyun Cho

Predominant high melting point solders for high-temperature and harsh environment electronics (operating temperatures from 200 to 250 °C) are Pb-based systems, which are being subjected to RoHS regulations because of their toxic nature. In this study, high bismuth (Bi) alloy compositions with Bi-XSb-10Cu (X from 10 wt % to 20 wt %) were designed and developed to evaluate their potential as high-temperature, Pb-free replacements. Reflow processes were developed to make die-attach samples made from the cast Bi alloys. Die-attach joints made from Bi-15Sb-10Cu alloy exhibited an average shear strength of 24 MPa, which is comparable to that of commercially available high Pb solders. These alloy compositions also retained original shear strength even after thermal shock (TS) between −55 °C and +200 °C and high-temperature storage (HTS) at 200 °C. Brittle interfacial fracture sometimes occurred along the interfacial NiSb layer formed between Bi(Sb) matrix and Ni metallized surface. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the die-attach assembly and were compared to the corresponding bulk alloys. The thermal conductivity of all the Bi–Sb alloys was higher than that of pure Bi. By creating high volume fraction of precipitates in a die-attach joint microstructure, it was feasible to further increase thermal conductivity of this joint to 24 W/m·K, which is three times higher than that of pure Bi (8 W/m·K). Bi–15Sb–10Cu alloy has so far shown the most promising performance as a die-attach material for high-temperature applications (operated over 200 °C). Hence, this alloy was further studied to evaluate its potential for plastic deformation. Bi–15Sb–10Cu alloy has shown limited plastic deformation in room temperature tensile testing in which premature fracture occurred via the cracks propagated on the (111) cleavage planes of rhombohedral crystal structure of the Bi(Sb) matrix. The same alloy has, however, shown up to 7% plastic strain under tension when tested at 175 °C. The cleavage planes, which became oriented at smaller angles to the tensile stress, contributed to improved plasticity in the high-temperature test.


2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000202-000206
Author(s):  
Hiroshi Nishikawa ◽  
Xiangdong Liu ◽  
Siliang He

Abstract High-temperature joining is a key technology for electronic component assembly and other high-temperature applications. As a die attach process for power devices, we focus on a transient liquid phase (TLP) bonding, which can be operated at a low temperatures while resulting in higher re-melting temperatures of bonded joints. However, some drawbacks of this technology still remain. For example, the duration of this process is too long, up to a few hours, and multiple hours of annealing are required to achieve a thermodynamically stable joint. So we are studying on a TLP bonding using Sn-coated Cu particles to reduce the bonding process time. In this study, we evaluated the effect of isothermal aging at 250 °C on the shear strength of Cu/Cu joints using a Sn-coated Cu particle paste. As a result, a thermally stable joint fully comprising Cu3Sn phase with a dispersion of Cu particles could be obtained after sintering for 30 s at 300 °C under a formic acid atmosphere. The shear strength of the joint before isothermal aging was about 25 MPa and the shear strength after isothermal aging at 250 °C for 1000 h was more than 25 MPa.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000246-000253 ◽  
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analysis and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC-analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 minutes for process temperatures around 50°C above the melting point of the low temperature constituent. For the shear strength studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of pastes having different ratios of copper and tin have been assessed. A fixture was designed for high temperatures enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, Cu40Sn pastes showed high shear strengths up to 600°C, and extended curing further increased the joint strength. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need of applying pressure during processing.


2012 ◽  
Vol 188 ◽  
pp. 238-243
Author(s):  
Conor Slater ◽  
Fabrizio Vecchio ◽  
Thomas Maeder ◽  
Peter Ryser

Polymer adhesives offer a viable method for mounting silicon dies for high temperature applications. Here a test vehicle for comparing the thermal conductivity of different die attach materials is presented. The setup can be used to determine the degree of degradation of polymers. It consists of a mock die that has an integrated thick film heater, which is mounted onto a substrate. In operation, the substrate is placed on a heatsink and the die is heated. When the temperature reaches equilibrium the heater is switched off and the temperature of the die is measured as it cools. The time constant of the temperature decay is calculated to give the thermal conductivity. In this paper the thermal conductivity of an epoxy die attach adhesive is compared to its shear strength.


Author(s):  
Brandon Prior

This paper will focus on emerging and fast growth package solutions to meet mobile products' density and cost requirements. A short review of where package miniaturization and modularization has taken us so far, and where it will lead in the next 5 years. Teardowns of high density systems and packages will be used to illustrate key points. Low temperature Ag sintering technology provides a lead-free die attachment compatible with high temperature (300°C) applications. Previous work with Ag sintering has required some pressure during the sintering process or been limited to small area die. In this paper, a pressureless sintering of micro-scale silver paste procedure is presented for large (8mm x 8mm) area die. Experimental combinations included: Ag metallized Si die, Au metallized Si die, Ag thick film substrate metallization, Au thick film substrate metallization, PdAg thick film metallization and sintering temperature. For Au metallization (die and/or substrate), the initial shear strength results were good with 8mm x 8mm die sintered at lower temperatures (200°C). The shear strength was out range of our shear test machine (100 kg), corresponding to >15.3 MPa. However, after aging for 24 hours at 300°C, the shear strength dropped significantly to 40.38 Kg (6.183 MPa). An SEM was used to characterize cross sections of as-built and aged sample. The decrease in die shear strength with high temperature sintering (250°C and 300°C) or high temperature aging is attributed to surface diffusion of Ag along the Au surface resulting in a dense Ag layer adjacent to the Au surface and a depletion layer within the die attach on the opposite side of the the dense Ag layer. Shear failures occurred through the depleted region. For Ag metallization, no decrease in shear strength was observed with 300°C aging. Shear strength of 8x8cm2 dies was out range of our shear test machine (>100 kg, >15.3 MPa) as-built. The shear strength remained out of range (>15.3MPa) after more than 2000 hours of 300C aging.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000449-000452 ◽  
Author(s):  
Xiangdong Liu ◽  
Hiroshi Nishikawa

We develop a transient liquid phase sinter (TLPS) bonding using Sn-coated Cu micro-sized particles. With this bonding process, a thermally stable joint comprising Cu3Sn phase and a dispersion of ductile Cu particles can be obtained. The particle paste, which contained Cu particles with a thin Sn coating and terpineol, was used to join Cu substrates. The setup was bonded at 300 °C for 30s under an applied pressure of 10 MPa using a thermo-compression bonding system under a formic acid gas atmosphere for reducing the oxide layer on the Sn coating and the Cu substrate. After bonding, the TLPS joint showed a thermally stable microstructure with a good shear strength, which was fully consisted of Cu3Sn intermetallic compounds matrix and embedded ductile Cu particles. The kinetics of the microstructure transformation and high temperature reliability of the TLPS joint were investigated. After 300 °C isothermal aging for 200h, the shear strength and microstructure of the TLPS joints showed almost unchanged. The results demonstrate that joint with high-melting-point obtained by the TLPS bonding using Sn-coated Cu particle paste has the potential to fulfill the requirement of high temperature electronic packaging.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000347-000354 ◽  
Author(s):  
HongWen Zhang ◽  
RunSheng Mao ◽  
Ning-Cheng Lee ◽  
Satoshi Tanimoto

The BiAgX™ paste, designed for die attach application, composed of the majority of BiAg powders (melting point >260°C) and the minority of additive powders. The additive powders are dominating the interfacial reaction to improve the wetting of the paste on various commonly-used surface finish materials. After reflow, the joint shows the above 260°C remelting temperature. The average bond shear strength of BiAgX joint between SiC die and AMBC-SiN substrate (Package A) decreases from 54MPa to 16MPa with increasing temperature from RT to 250°C. Upon thermal storage at 200°C or 230°C for 3000hrs, the bond shear strength decreases from 54MPa to 38MPa and 21MPa, respectively. Upon thermal cycling from −55°C to 125°C for 2000cycles and thermal shock from −55°C to 150°C for 2000cycles, BiAgX outperforms Pb5Sn2.5Sn (Package B). BiAgX also show the better corrosion resistance than SAC305 and Pb5Sn2.5Ag under 96hrs salt water spray (SWS) tests.


Sign in / Sign up

Export Citation Format

Share Document