Modelling of accidental phenomena related to leakage and tank rupture of a vehicle converted to LPG

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Seddik Hellas ◽  
Chaib Rachid ◽  
Ion Verzea

Purpose Liquefied petroleum gas (LPG), known by its ecological qualities, making Algeria has since the 1980s carried out a policy of development of LPG fuel in substitution of traditional fuels and especially petrol. However, following a series of accidents (fires, explosions, etc). that occurred in 1999, 20 years after the introduction of the LPG in France these incidents led to the search for the strengthening of the safety of the installations by better or new technical and/or organizational measures. This strategy consists in establishing a balance between environmental protection and economic profitability while ensuring the safety aspect. Design/methodology/approach The approach used is quantitative risk analysis authors have identified the potential accident scenarios that consist of leakage and rupture of tanks depend on bow tie. According to the latter using PHAST software, to model these scenarios (thermal, overpressure and dispersion) and their effects on human beings and goods. Findings In this paper, it was noted that there are scenarios such as (jet fire, dispersion), are affected by atmospheric conditions (wind speed humidity), the stronger the wind, the higher the LPG spread unlike instant scenarios (1.3 s for the fireball and millisecond for the explosion) that have not been related to climatic conditions because they have a short duration on the one hand, and on the other hand, a safe distance is given in each phenomenon. Finally, some instructions for drivers and installers have been identified by protective and preventive action. Originality/value Based on a quantitative risk analysis, this work involves modelling potential accident scenarios such as (fireball, jet fire, flash fire and explosion) in the event of a gas leak and rupture in the tank. It aims to sensitize drivers and LPG kit installers, even to get a clear view on these accidental phenomena and how to avoid them.

2019 ◽  
Vol 18 (1) ◽  
pp. 40-54
Author(s):  
Mohamed Seddik Hellas ◽  
Rachid Chaib ◽  
Ion Verzea

Purpose Nowadays, artificial intelligence computational methods, such as knowledge-based systems, neural networks, genetic algorithms and fuzzy logic, have been increasingly applied to several industrial research studies, the purpose of this paper is to study the contribution of fuzzy and possibilistic techniques to quantitative risk analysis (QRA) in the presence of imperfect knowledge about the occurrence and consequences of accidental phenomena. Design/methodology/approach To solve the problem of uncertainties related to the elements of the accident scenario such as the frequency and severity of the consequences, the authors used fuzzy logic. Using this type of analysis, it is possible to visualize the contours of the dead or fuzzy injury by fireball thermal effect (first- and second-degree burn, death) and lesions caused by vapor cloud explosion overpressure (lung damage, eardrum rupture, head impact, whole-body displacement). The frequency and severity of fuzzy results are calculated by extended multiplication using the alpha-cuts method. Findings This research project aims to reflect the real situation in the in Amenas industrial area (SONATRACH company), specifically the liquefied petroleum gas storage tank On-Spec 05-V-411A, to deal with this type of risk. Using this analysis allows us to estimate the fuzzy individual risk using the approach of fuzzy logic to treating this uncertainty in the parameter information of accident scenarios. This index individuel risk (IR) was evaluated against the criterion of acceptability and then used for decision-making in the field of industrial risk analysis and evaluation. Originality/value The originality of the work is to identify the weak points of the classical QRA to solve the problem of the uncertainties related to the elements of the accident scenario such as the frequency and severity of the consequences to visualize the fuzzy risk contours. On the one hand and the development of software to calculate the probability of death by the overpressure effect and classify the most sensitive organs on the other hand. Given the importance of this study, it can be generalized for similar sites in the region.


2016 ◽  
Vol 23 (6) ◽  
pp. 727-750 ◽  
Author(s):  
Yang Zou ◽  
Arto Kiviniemi ◽  
Stephen W. Jones

Purpose The purpose of this paper is to address the current theoretical gap in integrating knowledge and experience into Building Information Model (BIM) for risk management of bridge projects by developing a tailored Risk Breakdown Structure (RBS) and formalising an active link between the resulting RBS and BIM. Design/methodology/approach A three-step approach is used in this study to develop a tailored RBS for bridge projects and a conceptual model for the linkage between the RBS and BIM. First, the integrated bridge information model is in concept separated into four levels of contents (LOCs) and six technical systems based on analysis of the Industry Foundation Classes specification, a critical review of previous studies and authors’ project experience. The second step develops a knowledge-based risk database through an extensive collection of risk data, a process of data mining, and further assessment and translation of data. A critical analysis is conducted in the last step to determine on which level the different risks should be allocated to bridge projects and to propose a conceptual model for linking the tailored RBS to the four LOCs and six technical systems of BIM. Findings The findings suggest that the traditional method and BIM can be merged as an integrated solution for risk management by establishing the linkage between RBS and BIM. This solution can take advantage of both the traditional method and BIM for managing risks. On the one hand, RBS enables risk information to be stored in a formal structure, used and communicated effectively. On the other hand, some features of BIM such as 3D visualisation and 4D construction scheduling can facilitate the risk identification, analysis, and communication at an early project stage. Research limitations/implications A limitation is that RBS is a qualitative technique and only plays a limited role in quantitative risk analysis. As a result, when implementing this proposed method, further techniques may be needed for assisting quantitative risk analysis, evaluation, and treatment. Another limitation is that the proposed method has not yet been implemented for validation in practice. Hence, recommendations for future research are to: improve the quantitative risk analysis and treatment capabilities of this proposed solution; develop computer tools to support the solution; integrate the linkage into a traditional workflow; and test this solution in some small and large projects for validation. Practical implications Through linking risk information to BIM, project participants could check and review the linked information for identifying potential risks and seeking possible mitigation measures, when project information is being transferred between different people or forwarded to the next phase. Originality/value This study contributes to the theoretical development for aligning traditional methods and BIM for risk management, by introducing a new conceptual model for linking RBS to BIM.


Author(s):  
Enerst Shingai Chikosi ◽  
Shingirai Stanley Mugambiwa ◽  
Happy Mathew Tirivangasi ◽  
Sejabaledi Agnes Rankoana

Purpose Perceptions of climate change and its threats to rural communities are among major challenges faced by scientists around the world. A few studies prove that these communities are aware of change in climatic conditions and their impacts on people’s livelihoods. Climate change is usually perceived as increasing warming days, erratic rainfall patterns, ecological variability, biological change and their adverse effects on human beings. This study aims to assess Ga-Dikgale community’s perceptions on climate change and variability. Design/methodology/approach A qualitative research method was adopted and community members of age 60 and above in GaDikgale community were purposively selected as participants in the study. Data were collected through in-depth interviews, and thematic content analysis was used to analyse data. Findings The study found that the community perceives climate change and climate variability based on changes in temperature patterns, erratic rainfall patterns, seasonal change, depletion of biodiversity, decline in subsistence crop production, change in water quality and cessation of cultural activities. Originality/value The study concludes that community’s perceptions of climate change are largely centred on variations in temperature and rainfall patterns. It has been established that knowledge of climate change in rural communities is of paramount importance in as far as adaptation to climate hazards is concerned.


2021 ◽  
Vol 36 (1) ◽  
pp. 67-76
Author(s):  
H. Jamilu ◽  
U. Abubakar-Zaria ◽  
S. M. Shuwa

Crude oil-fired heaters are associated with considerable fire and explosion hazards. The heaters present higher risks at later operational life due to ageing, wear and obsolescence. It is therefore important to re-evaluate such heaters to determine the adequacy or otherwise of the existing safeguards. This paper presents results of studies on hazard levels in aged fired heaters through quantitative consequence modeling method. A number of credible failure scenarios were considered. In particular, characteristics of potential jet fires due to Liquefied Petroleum Gas (LPG) leaks from hole sizes: 15, 30, 50 and 100 mm were investigated. For the 100 mm hole size, it was found that thermal radiation level of up to 37.5 kW/m2 could be experienced within 25 m radius of the heater, which is enough to affect nearby operators severely and could also adversely affect critical pieces of equipment around. Fireball potential with peak thermal density of about 12.5 kW/m2 was also observed within 2 m radius. For the 100 mm hole size, lower flammability limit of the fuel could be attained within 16 m downwind which poses flash fire risks. Overpressures of 1.02, 1.14 and 1.21 bar could be experienced at 30, 6 and 4 m respectively away from the fired heater which could result in partial demolition of structures that are within the radius.Overall, the results indicate that the risk profile is very sensitive to leak sizes, operating and atmospheric conditions as well as the fuel quantity being held, among others. For the chosen case study, higher integrity protection layers, in form of safety instrumented systems, relief, blow down and alarm systems, are recommended. Keywords: Downwind distance; Consequence modeling; Radiation intensity; Flame length; Overpressure; Toxicity; Liquefied Petroleum Gas.


2019 ◽  
Vol 19 (1) ◽  
pp. 48-70 ◽  
Author(s):  
Shahab Shoar ◽  
Farnad Nasirzadeh ◽  
Hamid Reza Zarandi

Purpose The purpose of this paper is to present a fault tree (FT)-based approach for quantitative risk analysis in the construction industry that can take into account both objective and subjective uncertainties. Design/methodology/approach In this research, the identified basic events (BEs) are first categorized based on the availability of historical data into probabilistic and possibilistic. The probabilistic and possibilistic events are represented by probability distributions and fuzzy numbers, respectively. Hybrid uncertainty analysis is then performed through a combination of Monte Carlo simulation and fuzzy set theory. The probability of occurrence of the top event is finally calculated using the proposed FT-based hybrid uncertainty analysis method. Findings The efficiency of the proposed method is demonstrated by implementing in a real steel structure project. A quantitative risk assessment is performed for weld cracks, taking into account of both types of uncertainties. An importance analysis is finally performed to evaluate the contribution of each BE to the probability of occurrence of weld cracks and adopt appropriate response strategies. Research limitations/implications In this research, the impact of objective (aleatory) dependence between the occurrences of different BEs and subjective (epistemic) dependence between estimates of the epistemically uncertain probabilities of some BEs are not considered. Moreover, there exist limitations to the application of fuzzy set rules, which were used for aggregating experts’ opinions and ranking purposes of the BEs in the FT model. These limitations can be investigated through further research. Originality/value It is believed that the proposed hybrid uncertainty analysis method presents a robust and powerful tool for quantitative risk analysis, as both types of uncertainties are taken into account appropriately.


1994 ◽  
Vol 29 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Frans A. N. van Baardwijk

The contribution of accidental discharges to the total emission of contaminating substances in surface waters is relatively increasing, as regular discharges are reduced. In The Netherlands a program has been started to develop a quantitative risk analysis method to be used within the discharge permitting process. The methodology takes into account the type of activities and related accident scenarios in terms of failure frequencies and source sizes, correction factors according to specific circumstances, as well as the nature of the receiving system (types of surface waters, but also public sewage water treatment plants). The methodology will provide an indication of the risk reduction needed in terms of reducing the frequency and/or the volume of possible spills. The method itself, the use of it within the legal framework and the relation with the EC-Directives are discussed.


2020 ◽  
Vol 132 (2) ◽  
pp. 301-305
Author(s):  
Daewook Kim

AbstractThe expression נפשות in Ezekiel 13 refers to two different meanings: (living) human beings and the spirits of the dead. The words כסתות and מספחות seem to refer to the paraphernalia involved in the women’s practice of necromancy and in the fall of the people, respectively. The expression נפשות is employed as antanaclasis to establish a conceptual connection between necromancy and ruin.


2009 ◽  
Vol 113 (2) ◽  
pp. 468-482 ◽  
Author(s):  
Torka S. Poet ◽  
Chris R. Kirman ◽  
Michael Bader ◽  
Christoph van Thriel ◽  
Michael L. Gargas ◽  
...  

2010 ◽  
Vol 13 (8) ◽  
pp. 1027-1041 ◽  
Author(s):  
Konstantinos A. Kirytopoulos ◽  
Athanasios A. Rentizelas ◽  
Ilias P. Tatsiopoulos ◽  
George Papadopoulos

2016 ◽  
Vol 34 (2) ◽  
pp. 135-149 ◽  
Author(s):  
Chiemi Iba ◽  
Ayumi Ueda ◽  
Shuichi Hokoi

Purpose – Frost damage is well-known as the main cause of roof tile deterioration. The purpose of this paper is to develop an analytical model for predicting the deterioration process under certain climatic conditions. This paper describes the results of a field survey conducted to acquire fundamental information useful to this aim. Design/methodology/approach – A field survey of roof tile damage by freezing was conducted in an old temple precinct in Kyoto, Japan. Using detailed observations and photographic recordings, the damage progress was clarified. To examine the impact of climatic conditions upon the damage characteristics, weather data and roof tile temperatures were measured and logged in the winter season. Findings – The deterioration process was observed under the climatic conditions associated with the measured temperature of the roof tiles. In particular, it was revealed that the orientation has a significant influence on increasing or decreasing the risk of frost damage. For certain distinctive forms of damage, the deterioration mechanisms were estimated from the viewpoint of the moisture flow and temperature distribution in the tile. Originality/value – This study contributes to the elucidation of the mechanism behind frost damage to roof tiles. The findings will guide the construction of a numerical model for frost damage prediction.


Sign in / Sign up

Export Citation Format

Share Document