Research perspectives and state-of-the-art methods in photovoltaic microgrids

2019 ◽  
Vol 17 (2) ◽  
pp. 223-235
Author(s):  
Thomas Thangam ◽  
Muthuvel K. ◽  
Hussein A. Kazem

Purpose Increased investment of a photovoltaic (PV) array makes it essential for the client to attain better results from the PV system. The nonlinearity of the PV array and the revolution and rotation of the earth require the appliance of maximum power point tracking (MPPT) to the system. Accordingly, grid connected PV systems have turn out to be renowned, because they do not require battery back-ups to accomplish MPPT. Stand-alone systems could also attain MPPT; however, they require appropriate battery back-ups for this function. Design/methodology/approach This survey intends to formulate a review on the PV-based microgrid (MG) systems. Here, the literature analyses on diverse techniques associated with PV-based MG systems. It reviews 65 research papers and states the significant analysis. Initially, the analysis depicts various controllers that are contributed in different papers. Subsequently, the analysis also focuses on various features such as PV capacity and inverter topology, and it also analyses the renewable grid source that are exploited in each paper. Furthermore, this paper provides the detailed study regarding the chronological review and performance achievements in each contribution. Finally, it extends the various research issues which can be useful for the researchers to accomplish further research on PV-based MG systems. Findings This paper has presented a detailed review on PV-based MG systems that were enumerated in the above sections. Here, various controllers along with their better achievements were analyzed and described. From the review, it was known that several PV-based MG systems were really at the point for enabling better power output and conversion efficiency. In conclusion, this paper reviewed about 65 research papers and declared the significant analysis. Initially, the analysis also focused on various controller classifications in PV-based MG systems that were reviewed in this paper. Subsequently, the analysis also focused on various features, such as PV capacity and inverter topology. The analysis also reviewed the performance achievements and renewable gird source that were exploited in PV-based MG systems. At last, this paper has presented various research issues which can be useful for the researchers to accomplish further research on the features of PV-based MG systems. Originality/value This paper presents a brief analysis of PV-based MG systems. This is the first work that uses PV-based MG systems for better regulation of MPPT.

2012 ◽  
Vol 430-432 ◽  
pp. 1348-1351
Author(s):  
Yu Shui Huang ◽  
Yan Jie Wei ◽  
Xue Chen

The output of photovoltaic (PV) array is affected by the environmental factors such as irradiation and temperature, so an effective maximum power point tracking (MPPT) method of PV array is necessary. In this paper, a modified perturb and observe (MPO) method is proposed to achieve MPPT for a PV system and to improve the shortcomings of prior methods. Comparing with a typical perturb and observe (P&O) MPPT method, the MPO efficiency is improved in transient state by the proposed MPPT as theoretical prediction.


2020 ◽  
Author(s):  
Mohammad junaid Khan

Abstract Backgrounds: Solar photo-voltaic (PV) arrays have non-linear characteristics with distinctive maximum power point (MPP) which relies on ecological conditions such as solar radiation and ambient temperature. In order to obtain continuous maximum power (MP) from PV arrays under varying ecological conditions, maximum power point tracking (MPPT) control methods are employed. MPPT is utilized to extract MP from the solar PV array, high-performance soft computing techniques can be used as an MPPT technique. Results: In order to show the feasibility and performance of the proposed Artificial Intelligence based Perturbe and Observe (AIAPO) MPPT controller, a simulation analysis has been carried out using the PV system. Combined results with different MPPT systems for power, voltage and current waveforms are the output values increase to 272.4W, 157V and 1.74A respectively. Using proposed AIAPO MPPT provides more accurate and stable result as compared to Perturbe and Observe (PO), Fuzzy Logic (FL) and Artificial Neural Network (ANN) based MPPT Technique. As per the experimentation performed by various MPPT techniques are carried out for PV system which are clearly indicating that the comparative analysis of power, voltage and current performance of PV system (i.e. have been recorded 272.4W, 157V and 1.74A) using proposed MPPT method which is better than the PO based MPPT (i.e. 169.1W, 127V, 1.43A), FL based MPPT technique (i.e. 256.9W, 152V, 1.69A) and ANN based MPPT technique (i.e. 265W, 154V, 1.71A) correspondingly. Conclusions: The aim of this paper is to track MPP from the solar PV array by the proposed hybrid controller for irradiation changes and comparing results with PO, FL and ANN based MPPT controllers. Different MPPT techniques have been used to compute MPP and improved efficiency of the PV panel. AIAPO, ANN, FL and PO MPPT methods have been chosen to obtain this objective. Simulation results showing that the system in which proposed control method has been used gives better performance and reduce fluctuations of the MPP as compared to PO, FL and ANN based MPPT technique at rapid changes of irradiation. In order to fabricate a reliable and real time hybrid system, there is a massive scope of research to develop multi-input renewable energy systems.


2017 ◽  
Vol 6 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Bhukya Krishna Naick ◽  
Tarun Kumar Chatterjee ◽  
Kalyan Chatterjee

Photovoltaic (PV) system is one of the reliable alternative sources of energy and its contribution in energy sector is growing rapidly. The performance of PV system depends upon the solar insolation, which will be varying throughout the day, season and year. The biggest challenge is to obtain the maximum power from PV array at varying insolation levels. The maximum power point tracking (MPPT) controller, in association with tracking algorithm will act as a principal element in driving the PV system at maximum power point (MPP). In this paper, the simulation model has been developed and the results were compared for perturb and observe, incremental conductance, extremum seeking control and fuzzy logic controller based MPPT algorithms at different irradiation levels on a 10 KW PV array. The results obtained were analysed in terms of convergence rate and their efficiency to track the MPP.Article History: Received 3rd Oct 2016; Received in revised form 6th January 2017; Accepted 10th February 2017; Available onlineHow to Cite This Article: Naick, B. K., Chatterjee, T. K. & Chatterjee, K. (2017) Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation. Int Journal of Renewable Energy Development, 6(1), 65-74.http://dx.doi.org/10.14710/ijred.6.1.65-74


2016 ◽  
Vol 2016 ◽  
pp. 1-20
Author(s):  
G. Rohini ◽  
V. Jamuna

This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.


2016 ◽  
Vol 13 (6) ◽  
pp. 494-499 ◽  
Author(s):  
Ehsan Mohsin Alhamdawee ◽  
Nashiren Farzilah Binti Mailah ◽  
Mohd Amran Mohd Radzi ◽  
Suhaidi Bin Shafie ◽  
Shahrooz Hajighorbani ◽  
...  

Purpose This work aims to overcome the drawbacks of the nonlinear characteristics of the photo-voltaic (PV) system which are affected by the atmospheric variations. Design/methodology/approach As a result, the optimum power point on these characteristics accordingly changes and the efficiency of photovoltaic systems reduces. Maximum power point tracking (MPPT) algorithms track this optimum point and enhance the efficiency despite the irradiance and temperature changes. Findings The conventional perturbation and observation (P&O) algorithm uses fixed step sizes to increment and decrement the duty ratio that leads to slow response time and continuous oscillation around the MPP at steady state conditions. The paper proposes a fuzzy logic-based controller that overcomes the drawbacks of P&O algorithm in term of response time and the oscillation. Originality/value MATLAB/Simulink environment was used to model and simulate the KC200GT PV module, direct current (DC)-DC boost converter and the MPPT algorithms.


Author(s):  
Imad A. Elzein ◽  
Yuri N. Petrenko

In this article an extended literature surveying review is conducted on a set of comparative studies of maximum power point tracking (MPPT) techniques.  Different MPPT methods are conducted with an ultimate aim of how to be maximizing the PV system output power by tracking Pmax in a set of different operational circumstances. In this paper maximum power point tracking, MPPT techniques are reviewed on basis of different parameters related to the design simplicity and or complexity, implementation, hardware required, and other related aspects.


2021 ◽  
Vol 13 (5) ◽  
pp. 2656
Author(s):  
Ahmed G. Abo-Khalil ◽  
Walied Alharbi ◽  
Abdel-Rahman Al-Qawasmi ◽  
Mohammad Alobaid ◽  
Ibrahim M. Alarifi

This work presents an alternative to the conventional photovoltaic maximum power point tracking (MPPT) methods, by using an opposition-based learning firefly algorithm (OFA) that improves the performance of the Photovoltaic (PV) system both in the uniform irradiance changes and in partial shading conditions. The firefly algorithm is based on fireflies’ search for food, according to which individuals emit progressively more intense glows as they approach the objective, attracting the other fireflies. Therefore, the simulation of this behavior can be conducted by solving the objective function that is directly proportional to the distance from the desired result. To implement this algorithm in case of partial shading conditions, it was necessary to adjust the Firefly Algorithm (FA) parameters to fit the MPPT application. These parameters have been extensively tested, converging satisfactorily and guaranteeing to extract the global maximum power point (GMPP) in the cases of normal and partial shading conditions analyzed. The precise adjustment of the coefficients was made possible by visualizing the movement of the particles during the convergence process, while opposition-based learning (OBL) was used with FA to accelerate the convergence process by allowing the particle to move in the opposite direction. The proposed algorithm was simulated in the closest possible way to authentic operating conditions, and variable irradiance and partial shading conditions were implemented experimentally for a 60 [W] PV system. A two-stage PV grid-connected system was designed and deployed to validate the proposed algorithm. In addition, a comparison between the performance of the Perturbation and Observation (P&O) method and the proposed method was carried out to prove the effectiveness of this method over the conventional methods in tracking the GMPP.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1943
Author(s):  
Bader N. Alajmi ◽  
Mostafa I. Marei ◽  
Ibrahim Abdelsalam ◽  
Mohamed F. AlHajri

A high-frequency multi-port (HFMP) direct current (DC) to DC converter is presented. The proposed HFMP is utilized to interface a photovoltaic (PV) system. The presented HFMP is compact and can perform maximum power point tracking. It consists of a high-frequency transformer with many identical input windings and one output winding. Each input winding is connected to a PV module through an H-bridge inverter, and the maximum PV power is tracked using the perturb and observe (P&O) technique. The output winding is connected to a DC bus through a rectifier. The detailed analysis and operation of the proposed HFMP DC-DC converter are presented. Extensive numerical simulations are conducted, using power system computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) software, to evaluate the operation and dynamic behavior of the proposed PV interfacing scheme. In addition, an experimental setup is built to verify the performance of the HFMP DC-DC converter.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Sign in / Sign up

Export Citation Format

Share Document