Temperature dependence of hot carrier effects in short-channel Si-MOSFETs

1995 ◽  
Vol 42 (12) ◽  
pp. 2211-2216 ◽  
Author(s):  
N. Sano ◽  
M. Tomizawa ◽  
A. Yoshii
1996 ◽  
Vol 428 ◽  
Author(s):  
Abhijit Phanse ◽  
Samar Saha

AbstractThis paper addresses hot-carrier related reliability issues in deep submicron silicon nMOSFET devices. In order to monitor the hot-carrier induced device degradation, the substrate current was measured for devices with varying channel lengths (20 um - 0.24 um) under various biasing conditions. Deep submicron devices experience velocity saturation of channel carriers due to extremely high lateral electric fields. To evaluate the effects of velocity saturation in the channel, the pinch-off length in the channel was extracted for all the devices of the target technology. It was observed that for very short channel devices, carriers in most of the channel experience velocity saturation and almost the entire channel gets pinched off. It is shown in this paper that for very short channel devices, the pinch-off length in the channel is limited by the effective channel length, and that velocity saturation effects are critical to the transport of channel carriers.


2002 ◽  
Vol 46 (3) ◽  
pp. 429-434 ◽  
Author(s):  
S. Zanchetta ◽  
A. Todon ◽  
A. Abramo ◽  
L. Selmi ◽  
E. Sangiorgi

1997 ◽  
Vol 473 ◽  
Author(s):  
Samar K. Saha

ABSTRACTHot-carrier effect was studied for different channel doping profiles in nMOSFET devices with effective channel length near 100 nm using a device simulator. The test structures for device simulation were generated using gate oxide thickness of 3 nm. The channel doping profiles used were abrupt- and graded-retrograde types with low surface and high substrate concentrations, and conventional step profiles with high surface and low substrate concentrations. For accurate device simulation, a hydrodynamic model for semiconductors was used to simulate the non-local transport phenomena in the devices. The simulation results indicate that for ultra-short channel devices, the current drivability and the hot-carrier effects depend on the shape of channel doping profiles. For a given supply voltage, the hot-carrier effects in ultra-short channel devices can be controlled by optimizing the channel doping profiles.


Sign in / Sign up

Export Citation Format

Share Document