High Efficiency Quasi-Resonant DC Link Three-phase Power Inverter for Full-Range PWM

1995 ◽  
Vol 31 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Luigi Malesani ◽  
Paolo Tenti ◽  
Paolo Tomasin ◽  
Vanni Toigo
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4407
Author(s):  
Mbika Muteba

There is a necessity to design a three-phase squirrel cage induction motor (SCIM) for high-speed applications with a larger air gap length in order to limit the distortion of air gap flux density, the thermal expansion of stator and rotor teeth, centrifugal forces, and the magnetic pull. To that effect, a larger air gap length lowers the power factor, efficiency, and torque density of a three-phase SCIM. This should inform motor design engineers to take special care during the design process of a three-phase SCIM by selecting an air gap length that will provide optimal performance. This paper presents an approach that would assist with the selection of an optimal air gap length (OAL) and optimal capacitive auxiliary stator winding (OCASW) configuration for a high torque per ampere (TPA) three-phase SCIM. A genetic algorithm (GA) assisted by finite element analysis (FEA) is used in the design process to determine the OAL and OCASW required to obtain a high torque per ampere without compromising the merit of achieving an excellent power factor and high efficiency for a three-phase SCIM. The performance of the optimized three-phase SCIM is compared to unoptimized machines. The results obtained from FEA are validated through experimental measurements. Owing to the penalty functions related to the value of objective and constraint functions introduced in the genetic algorithm model, both the FEA and experimental results provide evidence that an enhanced torque per ampere three-phase SCIM can be realized for a large OAL and OCASW with high efficiency and an excellent power factor in different working conditions.


2015 ◽  
Vol 51 (6) ◽  
pp. 4664-4676 ◽  
Author(s):  
Juan Colmenares ◽  
Dimosthenis Peftitsis ◽  
Jacek Rabkowski ◽  
Diane-Perle Sadik ◽  
Georg Tolstoy ◽  
...  

Author(s):  
Qun Chen ◽  
Zong-Xiao Yang ◽  
Zhumu Fu

Purpose The problem of parameter identification for biaxial piezoelectric stages is still a challenging task because of the existing hysteresis, dynamics and cross-axis coupling. This study aims to find an accurate and systematic approach to tackle this problem. Design/methodology/approach First, a dual-input and dual-output (DIDO) model with Duhem-type hysteresis is proposed to depict the dynamic behavior of the biaxial piezoelectric stage. Then, a systematic identification approach based on a modified differential evolution (DE) algorithm is proposed to identify the unknown parameters of the Duhem-type DIDO model for a biaxial piezostage. The randomness and parallelism of the modified DE algorithm guarantee its high efficiency. Findings The experimental results show that the characteristics of the biaxial piezoelectric stage can be identified with adequate accuracy based on the input–output data, and the peak-valley errors account for 2.8% of the full range in the X direction and 1.5% in the Y direction. The attained results validated the correctness and effectiveness of the presented identification method. Originality/value The classical DE algorithm has many adjustment parameters, which increases the inconvenience and difficulty of using in practice. The parameter identification of Duhem-type DIDO piezoelectric model is rarely studied in detail and its successful application based on DE algorithm on a biaxial piezostage is hitherto unexplored. To close this gap, this work proposed a modified DE-based systematic identification approach. It not only can identify this complicated model with more parameters, but also has little tuning parameters and thus is easy to use.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022073
Author(s):  
Yuan Cao ◽  
Fuzhi Jing ◽  
Heng Wan

Abstract Permanent Magnet Synchronous Motor (Permanent Magnet Synchronous Motor, hereinafter referred to as PMSM) has the characteristics of small size, high efficiency, high power density and fast dynamic response, etc., and more and more applications in the transportation industry. This also has higher and higher requirements for the reliability and security of PMSM drivers. In this paper, the fault tolerant control strategy of PMSM based on three phase four switch inverter is proposed based on vector control and the simulation verification is carried out.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4186
Author(s):  
Saddam Shueai Alnamer ◽  
Saad Mekhilef ◽  
Hazlie Mokhlis ◽  
Nadia M. L. Tan

This research proposes a four-level T-type inverter that is suitable for low-power applications. The presented topology outranks other types of inverters in terms of a smaller number of semiconductor devices, absence of passive components such as clamping diodes and flying capacitors, low switching and conduction losses, and high efficiency. The proposed topology is free from voltage deviation and unbalanced voltage occurrences that are present in other multilevel converters having clamping diodes or flying capacitors. The proposed inverter can extend to N levels using unequal dc-link voltage sources for medium-voltage application. The inverter employs the simple fundamental frequency staircase modulation technique. Moreover, this paper presents a current commutation strategy to prevent the occurrences of short circuit and minimizing the number of required switching devices and switching transitions, resulting in improving the efficiency of the inverter. This paper also analyses the theoretical converter losses showing lower switching and conduction losses when compared to existing four-level inverters. The experimental validation of the proposed inverter shows its operating feasibility and a low output voltage THD.


Sign in / Sign up

Export Citation Format

Share Document