Field-oriented asynchronous pulse-width modulation for high-performance AC machine drives operating at low switching frequency

1991 ◽  
Vol 27 (3) ◽  
pp. 574-581 ◽  
Author(s):  
J. Holtz ◽  
E. Bube
Author(s):  
Sreenivasappa Bhupasandra Veeranna ◽  
Udaykumar R Yaragatti ◽  
Abdul R Beig

The digital control of three-level voltage source inverter fed high power high performance ac drives has recently become a popular in industrial applications. In order to control such drives, the pulse width modulation algorithm needs to be implemented in the controller. In this paper, synchronized symmetrical bus-clamping pulse width modulation strategies are presented. These strategies have some practical advantages such as reduced average switching frequency, easy digital implementation, reduced switching losses and improved output voltage quality compared to conventional space vector pulse width modulation strategies. The operation of three level inverter in linear region is extended to overmodulation region. The performance is analyzed in terms THD and fundamental output voltage waveforms and is compared with conventional space vector PWM strategies and found that switching losses can be minimized using bus-clamping strategy compared to conventional space vector strategy. The proposed method is implemented using Motorola Power PC 8240 processor and verified on a constant v/f induction motor drive fed from IGBT based inverter.


2014 ◽  
Vol 573 ◽  
pp. 143-149
Author(s):  
N. Ismayil Kani ◽  
B.V. Manikandan ◽  
Prabakar Perciyal

—This The Pulse Width Modulation (PWM) DC-to-AC inverter has been widely used in many applications due to its circuit simplicity and rugged control scheme. It is however driven by a hard-switching pulse width modulation (PWM) inverter, which has low switching frequency, high switching loss, high electro-magnetic interference (EMI), high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the existing soft-switching inverters. This proposed work overcomes the above problems with simple circuit topology and all switches work in zero-voltage switching condition. Comparative analysis between conventional open loop, PI and fuzzy logic based soft switching inverter is also presented and discussed. Keywords—Zero voltage switching, Inverter, Dc link, PI controller, Fuzzy logic system control ,Modulation strategy, Soft switching


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 853 ◽  
Author(s):  
Abdul Yasin ◽  
Muhammad Ashraf ◽  
Aamer Bhatti

The key issue in the implementation of the Sliding Mode Control (SMC) in analogue circuits and power electronic converters is its variable switching frequency. The drifting frequency causes electromagnetic compatibility issues and also adversely affect the efficiency of the converter, because the proper size of the inductor and the capacitor depends upon the switching frequency. Pulse Width Modulation based SMC (PWM-SMC) offers the solution, however, it uses either boundary layer approach or employs pulse width modulation of the ideal equivalent control signal. The first technique compromises the performance within the boundary layer, while the latter may not possess properties like robustness and order reduction due to the absence of the discontinuous function. In this research, a novel approach to fix the switching frequency in SMC is proposed, that employs a low pass filter to extract the equivalent control from the discontinuous function, such that the performance and robustness remains intact. To benchmark the experimental observations, a comparison with existing double integral type PWM-SMC is also presented. The results confirm that an improvement of 20% in the rise time and 25.3% in the settling time is obtained. The voltage sag during step change in load is reduced to 42.86%, indicating the increase in the robustness. The experiments prove the hypothesis that a discontinuous function based fixed frequency SMC performs better in terms of disturbances rejection as compared to its counterpart based solely on ideal equivalent control.


Author(s):  
J. Lamterkati ◽  
L. Ouboubker ◽  
M. Khafallah ◽  
A. El afia

<p><span>The study made in this paper concerns the use of the voltage-oriented control (VOC) of three-phase pulse width modulation (PWM) rectifier with constant switching frequency. This control method, called voltage-oriented controlwith space vector modulation (VOC-SVM). The proposed control scheme has been founded on the transformation between stationary (α-β) and and synchronously rotating (d-q) coordinate system, it is based on two cascaded control loops so that a fast inner loop controls the grid current and an external loop DC-link voltage, while the DC-bus voltage is maintained at the desired level and ansured the unity power factor operation. So, the stable state performance and robustness against the load’s disturbance of PWM rectifiers are boths improved. The proposed scheme has been implemented and simulated in MATLAB/Simulink environment. The control system of the VOC-SVM strategy has been built based on dSPACE system with DS1104 controller board. The results obtained show the validity of the model and its control method. Compared with the conventional SPWM method, the VOC-SVM ensures high performance and fast transient response.</span></p>


2012 ◽  
Vol 99 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Zekun Zhou ◽  
Yue Shi ◽  
Xin Ming ◽  
Bo Zhang ◽  
Zhaoji Li ◽  
...  

2013 ◽  
Vol 347-350 ◽  
pp. 392-395
Author(s):  
Song Li

With the development of high voltage technology ,the inverter power is becoming higher and higher . The traditional two-level inverter capacity has been difficult to achieve high power requirements due to the limitation of the power electronic devices. Therefore, different new kinds of multilevel inverter topologies with high-performance are proposed by the scientist all over the world. This paper introduces the topology structure, characteristics and working principle of threelevel inverter, and makes a detailed description of space vector pulse width modulation principle. Finally, the simulation waveforms are presented with Matlab/Simulink, the results verifies the validity of the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document