A low-power, high-speed, current-feedback op-amp with a novel Class AB high current output stage

1997 ◽  
Vol 32 (9) ◽  
pp. 1470-1474 ◽  
Author(s):  
J. Bales
2013 ◽  
Vol 380-384 ◽  
pp. 3304-3307
Author(s):  
Yang Guang ◽  
Bin Yu ◽  
Huang Hai

In this paper, an operational amplifier with low-power consumption has been designed. Using the complementary differential pair for the input stage and the class AB structure for the output stage, the common-mode input range and output swing of the proposed circuit could achieved rail-to-rail. Based on TSMC 0.18μm CMOS process, using HSPICE 2008 software for circuit simulation, the results showed that the proposed op-amp has more than 100dB open loop gain, meanwhile the static power consumption is less than 300μw. The circuit's phase margin is 68 degrees, CMRR is 135dB and power supply rejection ratio is 63dB.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550078 ◽  
Author(s):  
Seid Jafar Hosseinipouya ◽  
Farhad Dastadast

High performance of fully differential operational transconductance amplifier is designed and implemented using a 0.18-μm CMOS process. The implemented op-amp uses common mode feedback (CMFB) circuit operating in weak inversion region which does not affect other electrical characteristics due to eliminating common mode (CM) levels automatically leading to improve CM rejection ratio (CMRR) of the amplifier significantly. Moreover, the output stage has class-AB operation so that its current can be made larger due to increasing the output current dynamically using adaptive biasing circuit. Additionally, the AC currents of the active loads have been significantly reduced using negative impedances to increase the gain of the amplifier. The results show the GBW 2.3 MHz, slew rate 2.6 V/μs and 1% settling time 150 ns with a capacitive load of 15 pF. This amplifier dissipates only 6.2 μW from a 1.2 V power supply.


Author(s):  
A. Jeevan Kumar ◽  
K. Lokesh Krishna ◽  
K. Abhinav Viswateja ◽  
K. Gopi ◽  
S. Mohan Rao ◽  
...  

2010 ◽  
Vol 19 (02) ◽  
pp. 325-334 ◽  
Author(s):  
DAVIDE MARANO ◽  
GAETANO PALUMBO ◽  
SALVATORE PENNISI

The present paper addresses an improved low-power high-speed buffer amplifier topology for large-size liquid crystal display applications. The proposed buffer achieves high-speed driving performance while drawing a low quiescent current during static operation. The circuit offers enhanced slewing capabilities with a limited power consumption by exploiting a slew detector which monitors the output voltage of the input differential amplifier and outputs an additional current signal providing slew-rate enhancement at the output stage. Post-layout simulations show that the proposed buffer can drive a 1 nF column line load with 8.5 V/μs slew-rate and 0.8 μs settling time, while drawing only 8 μA static current from a 3 V power supply.


Sign in / Sign up

Export Citation Format

Share Document