Low-Power, High-Speed, Indirect Frequency-Compensated OPAMP with Class AB Output Stage in 180-nm CMOS Process Technology

Author(s):  
Subhrajyoti Das ◽  
Sushanta K. Mandal ◽  
Adyasha Rath ◽  
Sweta Padma Dash
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.


VLSI technology become one of the most significant and demandable because of the characteristics like device portability, device size, large amount of features, expenditure, consistency, rapidity and many others. Multipliers and Adders place an important role in various digital systems such as computers, process controllers and signal processors in order to achieve high speed and low power. Two input XOR/XNOR gate and 2:1 multiplexer modules are used to design the Hybrid Full adders. The XOR/XNOR gate is the key punter of power included in the Full adder cell. However this circuit increases the delay, area and critical path delay. Hence, the optimum design of the XOR/XNOR is required to reduce the power consumption of the Full adder Cell. So a 6 New Hybrid Full adder circuits are proposed based on the Novel Full-Swing XOR/XNOR gates and a New Gate Diffusion Input (GDI) design of Full adder with high-swing outputs. The speed, power consumption, power delay product and driving capability are the merits of the each proposed circuits. This circuit simulation was carried used cadence virtuoso EDA tool. The simulation results based on the 90nm CMOS process technology model.


Author(s):  
Mohd Tafir Mustaffa

Comparator is one of the main blocks that play a vital task in the performance of analog to digital converters (ADC) in all modern technology devices. High-speed devices with low voltage and low power are considered essential for industrial applications. The design of a low-power comparator with high speed is required to accomplish the requirements mostly in electronic devices that are necessary for high-speed ADCs. However, a high-speed device that leads the scaling down of CMOS process technology will consume more power. Thus, power reduction techniques such as multi-threshold super cut-off stack (MTSCStack), dual-threshold transistor stacking (DTTS), a bulk-driven, and a bulk-driven differential pair were studied in this work. This study aims to find and build the combination of these techniques to produce a comparator that can operate in low power without compromising existing performance using the 0.13-µm CMOS process. A comparator with a combination of MTSCStack, DTTS, and NMOS bulk-driven differential pair shows the most promising result of 6.29 µW for static power, 17.15 µW for dynamic power, and 23.44 µW for total power.


2013 ◽  
Vol 380-384 ◽  
pp. 3304-3307
Author(s):  
Yang Guang ◽  
Bin Yu ◽  
Huang Hai

In this paper, an operational amplifier with low-power consumption has been designed. Using the complementary differential pair for the input stage and the class AB structure for the output stage, the common-mode input range and output swing of the proposed circuit could achieved rail-to-rail. Based on TSMC 0.18μm CMOS process, using HSPICE 2008 software for circuit simulation, the results showed that the proposed op-amp has more than 100dB open loop gain, meanwhile the static power consumption is less than 300μw. The circuit's phase margin is 68 degrees, CMRR is 135dB and power supply rejection ratio is 63dB.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


2005 ◽  
Vol 15 (02) ◽  
pp. 459-476
Author(s):  
C. PATRICK YUE ◽  
JAEJIN PARK ◽  
RUIFENG SUN ◽  
L. RICK CARLEY ◽  
FRANK O'MAHONY

This paper presents the low-power circuit techniques suitable for high-speed digital parallel interfaces each operating at over 10 Gbps. One potential application for such high-performance I/Os is the interface between the channel IC and the magnetic read head in future compact hard disk systems. First, a crosstalk cancellation technique using a novel data encoding scheme is introduced to suppress electromagnetic interference (EMI) generated by the adjacent parallel I/Os . This technique is implemented utilizing a novel 8-4-PAM signaling with a data look-ahead algorithm. The key circuit components in the high-speed interface transceiver including the receive sampler, the phase interpolator, and the transmitter output driver are described in detail. Designed in a 0.13-μm digital CMOS process, the transceiver consumes 310 mW per 10-Gps channel from a I-V supply based on simulation results. Next, a 20-Gbps continuous-time adaptive passive equalizer utilizing on-chip lumped RLC components is described. Passive equalizers offer the advantages of higher bandwidth and lower power consumption compared with conventional designs using active filter. A low-power, continuous-time servo loop is designed to automatically adjust the equalizer frequency response for the optimal gain compensation. The equalizer not only adapts to different channel characteristics, but also accommodates temperature and process variations. Implemented in a 0.25-μm, 1P6M BiCMOS process, the equalizer can compensate up to 20 dB of loss at 10 GHz while only consumes 32 mW from a 2.5-V supply.


Sign in / Sign up

Export Citation Format

Share Document