Ground Contact Angle in Bipedal Locomotion towards Passive Dynamic Walking and Running

Author(s):  
Qining Wang ◽  
Long Wang
Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 413-425 ◽  
Author(s):  
Qining Wang ◽  
Yan Huang ◽  
Long Wang

SUMMARYThis paper presents a bipedal locomotion model for passive dynamic walking with flat feet and compliant ankles. The two-dimensional seven-link model extends the simplest walking model with the addition of hip actuation, knee joints, flat feet and torsional springs based compliance on ankle joints, concerning heel-strike and toe-strike transitions, to achieve adaptive bipedal locomotion on level ground with controllable walking speed. We investigate the effects of foot geometric parameters and ankles stiffness on bipedal walking. The model achieves satisfactory walking results not only on even ground but also on uneven terrain with no active control and on different walking velocities. In addition, from the view of stability, there is an optimal foot-ankle ratio of the passivity-based walker. The results can be used to explore further understanding of bipedal walking, and help the design of future intelligent ankle-foot prosthesis and passivity-based robot prototypes towards more practical uses.


ROBOT ◽  
2010 ◽  
Vol 32 (4) ◽  
pp. 478-483 ◽  
Author(s):  
Xiuhua NI ◽  
Weishan CHEN ◽  
Junkao LIU ◽  
Shengjun SHI

Robotica ◽  
2013 ◽  
Vol 31 (8) ◽  
pp. 1221-1227 ◽  
Author(s):  
Wenhao Guo ◽  
Tianshu Wang ◽  
Qi Wang

SUMMARYThis paper presents a modified passive dynamic walking model with hip friction. We add Coulomb friction to the hip joint of a two-dimensional straight-legged passive dynamic walker. The walking map is divided into two parts – the swing phase and the impact phase. Coulomb friction and impact make the model's dynamic equations nonlinear and non-smooth, and a numerical algorithm is given to deal with this model. We study the effects of hip friction on gait and obtain basins of attraction of different coefficients of friction.


Sign in / Sign up

Export Citation Format

Share Document