scholarly journals Modeling and Classification of Stator Inter-Turn Fault and Demagnetization Effects in BLDC Motor Using Rotor Back-EMF and Radial Magnetic Flux Analysis

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 118030-118049
Author(s):  
Adil Usman ◽  
Bharat Singh Rajpurohit
2021 ◽  
Author(s):  
Sergey Gandzha ◽  
Dmitry Gandzha

An analysis of electric machines with axial magnetic flux is given. First, the effect of commutation on the electromagnetic moment and electromagnetic power is analyzed. Two types of discrete switching are considered. The analysis is performed for an arbitrary number of phases. The first type of switching involves disabling one phase for the duration of switching. The second type of switching involves the operation of all phases in the switching interval. The influence of the pole arc and the number of phases on the electromagnetic moment and electromagnetic power is investigated. The conclusion is made about the advantage of the second type of switching. It is recommended to increase the number of phases. Next, the classification of the main structures of the axial machine is carried out. Four main versions are defined. For each variant, the equation of the electromagnetic moment and electromagnetic power is derived. This takes into account the type of commutation. The efficiency of the selected structures is analyzed. The comparative analysis is tabulated for choosing the best option. The table is convenient for engineering practice. This chapter forms the basis for computer-aided design of this class of machines.


Author(s):  
Israel Zamudio-Ramirez ◽  
Roque A Alfredo Osornio-Rios ◽  
Jose Alfonso Antonino-Daviu ◽  
Hubert Razik ◽  
Rene de Jesus Romero-Troncoso

2014 ◽  
Vol 695 ◽  
pp. 774-777
Author(s):  
Siti Nur Umira Zakaria ◽  
Erwan Sulaiman

This paper presents magnetic flux analysis of E-Core Hybrid Excited FSM with various rotor pole topologies. The stator consists of three active fluxes sources namely armature coil, field excitation coil and permanent magnet, while the rotor consists of only stack of iron which is greatly reliable for high speed operation. Initially, coil arrangement tests are examined to validate the operating principle of the motor and to identify the zero rotor position. Then, performances of 6S-4P, 6S-5P, 6S-7P and 6S-8P E-Core HEFSMs such as flux path, flux linkage, cogging torque and flux distribution are observed. As conclusion, 6S-5P and 6S-7P designs have purely sinusoidal flux waveform and less cogging torque suitable for high torque and power motor.


2019 ◽  
Vol 69 (3) ◽  
pp. 230-235 ◽  
Author(s):  
A. J. D. Nanthakumar ◽  
J. Jancirani ◽  
S. C. Rajasekaran ◽  
K. Sarathkumar

     A Magnetorheological damping has evolved as a potential tool in vibration control. The design of magnetorheological damping involves analysis of fluid flow principles and electromagnetic flux analysis. This research paper involves design and analysis of a magnetorheological damper employed for vibration control. The analysis is carried over by considering the domain as an axisymmetric model. The damping force of the damper depends upon the shear stress due to fluid viscosity and yield stress induced due to magnetic flux applied. The damping force generated by the damper is calculated.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5757
Author(s):  
Vicente Biot-Monterde ◽  
Ángela Navarro-Navarro ◽  
Jose A. Antonino-Daviu ◽  
Hubert Razik

The condition monitoring of induction motors (IM), is an important concern for industry due to the widespread use of these machines. Magnetic Flux Analysis, has been proven to be a reliable method of diagnosing these motors. Among the IM types, squirrel-cage motors (SCIM) are one of the most commonly used. In many industrial applications, the IM are driven by different types of starters, quite often by soft-starters. Despite rotor damages are more prone to occur in line-started motors, these kind of failures have been also reported in those ones driven by soft-starters. Related to this, the use of these type of starters may introduce some harmonic components, that could veil the magnetic flux signature of the different rotor faults. So, the aim of this study is to confirm if the Stray Flux Analysis technique maintains its reliability in these cases. Thus, this article presents the results of soft-started induction motors start-up tests, both in healthy and faulty motors. The fault components are detected by analyzing the stray flux during the starting and the study is complemented by analyzing the stray flux during the steady-state. In addition to the failure patterns, numerical indicators have been found so the identification of the failures is not only qualitative, but also quantitative. The results confirm the potential of the technique for detecting electromechanical failures in soft-started SCIMs.


Sign in / Sign up

Export Citation Format

Share Document