scholarly journals Estimation of High-Frequency Vibration Parameters for Terahertz SAR Imaging Based on FrFT with Combination of QML and RANSAC

IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Yinwei Li ◽  
Qi Wu ◽  
Jiawei Wu ◽  
Ping Li ◽  
Qibin Zheng ◽  
...  
2011 ◽  
Vol 121-126 ◽  
pp. 989-993
Author(s):  
Wei Wang ◽  
Jian Chao Jiao ◽  
Li Wei Tang ◽  
Tong Qiang Yang

Acceleration sensors array can effectively measure 6-DOF high-frequency vibration parameters of many dimensions linear vibration and angular vibration. In engineering, single axis sensors introduce several errors. They also require more space to fix in and increase the computational complexity. The new scheme applying 3-axis acceleration sensors instead of single axis sensors can solve the problem above with effect. Simultaneously, the feasibility of the scheme was verified by principle derivation and model simulation.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2669
Author(s):  
Yinwei Li ◽  
Li Ding ◽  
Qibin Zheng ◽  
Yiming Zhu ◽  
Jialian Sheng

Compared with microwave synthetic aperture radar (SAR), terahertz SAR (THz-SAR) is easier to achieve ultrahigh-resolution image due to its higher frequency and shorter wavelength. However, higher carrier frequency makes THz-SAR image quality very sensitive to high-frequency vibration error of motion platform. Therefore, this paper proposes a novel high-frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local fractional Fourier transform (LFrFT). Firstly, the high-frequency vibration error of the motion platform is modeled as a simple harmonic motion and THz-SAR echo signal received in each range pixel can be considered as a sinusoidal frequency modulation (SFM) signal. A novel algorithm for the parameter estimation of the SFM signal based on LFrFT is proposed. The instantaneous chirp rate of the SFM signal is estimated by determining the matched order of LFrFT in a sliding small-time window and the vibration acceleration is obtained. Hence, the vibration frequency can be estimated by the spectrum analysis of estimated vibration acceleration. With the estimated vibration acceleration and vibration frequency, the SFM signal is reconstructed. Then, the corresponding THz-SAR imaging algorithm is proposed to estimate and compensate the phase error caused by the high-frequency vibration error of the motion platform and realize high-frequency vibration error estimation and compensation for THz-SAR imaging. Finally, the effectiveness of the novel algorithm proposed in this paper is demonstrated by simulation results.


2021 ◽  
Vol 11 (22) ◽  
pp. 10862
Author(s):  
Yinwei Li ◽  
Qi Wu ◽  
Jiawei Jiang ◽  
Xia Ding ◽  
Qibin Zheng ◽  
...  

High-frequency vibration error of a moving radar platform easily introduces a non-negligible phase of periodic modulation in radar echoes and greatly degrades terahertz synthetic aperture radar (THz-SAR) image quality. For solving the problem of THz-SAR image-quality degradation, the paper proposes a multi-component high-frequency vibration error estimation and compensation approach based on the short-time Fourier transform (STFT). To improve the robustness of the method against noise effects, STFT is used to extract the instantaneous frequency (IF) of a high-frequency vibration error signal, and the vibration parameters are coarsely obtained by the least square (LS) method. To reduce the influence of the STFT window widths, a method based on the maximum likelihood function (MLF) is developed for determining the optimal window width by a one-dimensional search of the window widths. In the case of high noise, many IF estimation values seriously deviate from the true ones. To avoid the singular values of IF estimation in the LS regression, the random sample consensus (RANSAC) is introduced to improve estimation accuracy. Then, performing the STFT with the optimal window width, the accurate vibration parameters are estimated by LS regression, where the singular values of IF estimation are excluded. Finally, the vibration error is reconstructed to compensate for the non-negligible phase of the platform-induced periodic modulation. The simulation results prove that the error compensation method can meet THz-SAR imaging requirements, even at a low signal-to-noise ratio (SNR).


Wear ◽  
2021 ◽  
pp. 203814
Author(s):  
Marco Sorgato ◽  
Rachele Bertolini ◽  
Andrea Ghiotti ◽  
Stefania Bruschi

Langmuir ◽  
2013 ◽  
Vol 29 (11) ◽  
pp. 3835-3845 ◽  
Author(s):  
Jeremy Blamey ◽  
Leslie Y. Yeo ◽  
James R. Friend

2009 ◽  
Vol 79-82 ◽  
pp. 1727-1730 ◽  
Author(s):  
Xiao Dong He ◽  
Xiang Hao Kong ◽  
Li Ping Shi ◽  
Ming Wei Li

ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. So the active environment of metal honeycomb sandwich structure is very formidable. We have to discuss any extreme situation, for reason of making sure aerial vehicle is safe. And high-frequency vibration is one of active environment. In this paper we have analyzed high-frequency vibration response of metal honeycomb sandwich structure. We processed high-frequency vibration experiment by simulating true aerial environment. Sequentially we operated high-frequency vibration experiment of metal honeycomb sandwich structure with cracks, notches and holes. Then finite-element analysis was performed by way of validating the experiment results. Haynes214 is a good high temperature alloy material of both face sheet and core at present, so we choose it in this paper.


Sign in / Sign up

Export Citation Format

Share Document