scholarly journals High-Speed and Accurate Meat Composition Imaging by Mechanically-Flexible Electrical Impedance Tomography With k-Nearest Neighbor and Fuzzy k-Means Machine Learning Approaches

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 38792-38801
Author(s):  
P. N. Darma ◽  
M. Takei
Author(s):  
Tomasz Rymarczyk ◽  
Edward Kozłowski ◽  
Paweł Tchórzewski ◽  
Grzegorz Kłosowski ◽  
Przemysław Adamkiewicz

The article presents machine learning methods in the field of reconstruction of tomographic images. The presented research results show that electric tomography makes it possible to analyze objects without interfering with them. The work focused mainly on electrical impedance tomography and image reconstruction using deterministic methods and machine learning, reconstruction results were compared and various numerical models were used. The main advantage of the presented solution is the ability to analyze spatial data and high speed of processing. The implemented algorithm based on logistic regression is promising in image reconstruction. In addition, the elastic net method was used to solve the problem of selecting input variables in the regression model.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2016 ◽  
Vol 16 (01) ◽  
pp. 1640010 ◽  
Author(s):  
YING-TSANG LO ◽  
HAMIDO FUJITA ◽  
TUN-WEN PAI

Background: Coronary artery disease (CAD) is one of the most representative cardiovascular diseases. Early and accurate prediction of CAD based on physiological measurements can reduce the risk of heart attack through medicine therapy, healthy diet, and regular physical activity. Methods:Four heart disease datasets from the UC Irvine Machine Learning Repository were combined and re-examined to remove incomplete entries, and a total of 822 cases were utilized in this study. Seven machine learning methods, including Naïve Bayes, artificial neural networks (ANNs), sequential minimal optimization (SMO), k-nearest neighbor (KNN), AdaBoost, J48, and random forest, were adopted to analyze the collected datasets for CAD prediction. By combining co-expressed observations and an ensemble voting mechanism, we designed and evaluated a new medical decision classifier for CAD prediction. The TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) algorithm was applied to determine the best prediction method for CAD diagnosis. Results: Features of systolic blood pressure, cholesterol, heart rate, and ST depression are considered to be the most significant differences between patients with and without CADs. We show that the prediction capability of seven machine learning classifiers can be enhanced by integrating combinations of observed co-expressed features. Finally, compared to the use of any single classifier, the proposed voting mechanism achieved optimal performance according to TOPSIS.


2021 ◽  
Author(s):  
Diogo Pessoa ◽  
Bruno Machado Rocha ◽  
Grigorios-Aris Cheimariotis ◽  
Kostas Haris ◽  
Claas Strodthoff ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1521 ◽  
Author(s):  
Tomasz Rymarczyk ◽  
Grzegorz Kłosowski ◽  
Edward Kozłowski ◽  
Paweł Tchórzewski

The main goal of this work was to compare the selected machine learning methods with the classic deterministic method in the industrial field of electrical impedance tomography. The research focused on the development and comparison of algorithms and models for the analysis and reconstruction of data using electrical tomography. The novelty was the use of original machine learning algorithms. Their characteristic feature is the use of many separately trained subsystems, each of which generates a single pixel of the output image. Artificial Neural Network (ANN), LARS and Elastic net methods were used to solve the inverse problem. These algorithms have been modified by a corresponding increase in equations (multiply) for electrical impedance tomography using the finite element method grid. The Gauss-Newton method was used as a reference to machine learning methods. The algorithms were trained using learning data obtained through computer simulation based on real models. The results of the experiments showed that in the considered cases the best quality of reconstructions was achieved by ANN. At the same time, ANN was the slowest in terms of both the training process and the speed of image generation. Other machine learning methods were comparable with the deterministic Gauss-Newton method and with each other.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3679 ◽  
Author(s):  
Mathieu Darnajou ◽  
Antoine Dupré ◽  
Chunhui Dang ◽  
Guillaume Ricciardi ◽  
Salah Bourennane ◽  
...  

The investigation of quickly-evolving flow patterns in high-pressure and high-temperature flow rigs requires the use of a high-speed and non-intrusive imaging technique. Electrical Impedance Tomography (EIT) allows reconstructing the admittivity distribution characterizing a flow from the knowledge of currents and voltages on its periphery. The need for images at high frame rates leads to the strategy of simultaneous multi-frequency voltage excitations and simultaneous current measurements, which are discriminated using fast Fourier transforms. The present study introduces the theory for a 16-electrode simultaneous EIT system, which is then built based on a field programmable gate array data acquisition system. An analysis of the propagation of uncertainties through the measurement process is investigated, and experimental results with fifteen simultaneous signals are presented. It is shown that the signals are successfully retrieved experimentally at a rate of 1953 frames per second. The associated signal-to-noise ratio varies from 59.6–69.1 dB, depending on the generated frequency. These preliminary results confirm the relevance and the feasibility of simultaneous multi-frequency excitations and measurements in EIT as a means to significantly increase the imaging rate.


Sign in / Sign up

Export Citation Format

Share Document