scholarly journals Development of a High-Speed Current Injection and Voltage Measurement System for Electrical Impedance Tomography-Based Stretchable Sensors

Technologies ◽  
2017 ◽  
Vol 5 (3) ◽  
pp. 48 ◽  
Author(s):  
Stefania Russo ◽  
Samia Nefti-Meziani ◽  
Nicola Carbonaro ◽  
Alessandro Tognetti
2016 ◽  
Vol 2 (1) ◽  
pp. 499-502 ◽  
Author(s):  
Benjamin Schullcke ◽  
Sabine Krueger-Ziolek ◽  
Bo Gong ◽  
Knut Moeller

AbstractElectrical impedance tomography (EIT) is used to monitor the regional distribution of ventilation in a transversal plane of the thorax. In this manuscript we evaluate the impact of different quantities of electrodes used for current injection and voltage measurement on the reconstructed shape of the lungs. Results indicate that the shape of reconstructed impedance changes in the body depends on the number of electrodes. In this manuscript, we demonstrate that a higher number of electrodes do not necessarily increase the image quality. For the used stimulation pattern, utilizing neighboring electrodes for current injection and voltage measurement, we conclude that the shape of the lungs is best reconstructed if 16 electrodes are used.


2017 ◽  
Vol 58 ◽  
pp. 276-286 ◽  
Author(s):  
Olavo Luppi Silva ◽  
Raul Gonzalez Lima ◽  
Thiago Castro Martins ◽  
Fernando Silva de Moura ◽  
Renato Seiji Tavares ◽  
...  

2019 ◽  
Vol 41 (14) ◽  
pp. 4035-4049 ◽  
Author(s):  
Xiuyan Li ◽  
Yong Zhou ◽  
Jianming Wang ◽  
Qi Wang ◽  
Yang Lu ◽  
...  

Image reconstruction for Electrical Impedance Tomography (EIT) is a highly nonlinear and ill-posed inverse problem. It requires the design and employment of feasible reconstruction methods capable to guarantee trustworthy image generation. Deep Neural Networks (DNN) have a powerful ability to express complex nonlinear functions. This research paper introduces a novel framework based on DNN aiming to achieve EIT image reconstruction. The proposed DNN model, comprises of the following two layers, namely: The Stacked Autoencoder (SAE) and the Logistic Regression (LR). It is trained using the large lab samples which are obtained by the COMSOL simulation software (a cross platform finite elements analysis solver). The relationship between the voltage measurement and the internal conductivity distribution is determined. The untrained voltage measurement samples are used as input to the trained DNN, and the output is an estimate for image reconstruction of the internal conductivity distribution. The results show that the proposed model can achieve reliable shape and size reconstruction. When white Gaussian noise with a signal-to-noise ratio of 30, 40 and 50 were added to test set, the proposed DNN structure still has good imaging results, which proved the anti-noise capability of the network. Furthermore, the network that was trained using simulation data sets, would be applied for the EIT image reconstruction based on the experimental data that were produced after preprocessing.


Author(s):  
Ramesh Kumar ◽  
Rajesh Mahadeva

A newly proven technique is non-invasive bio-impedance, and also known as Electrical Impedance Tomography (EIT), which is used for medical or non-medical applications. EIT images are based on the internal distributions of the conductivity or resistivity from the boundary data, which depend on the voltage measurement of the stomach attached electrodes of the human body. An experimental study of the EIT system presented here has been used 8/16 surface electrodes configurations for the human body’s stomach. Then, according to the data acquisition methods of the EIT, the surface potentials of the stomach through the current injection were measured. For current pulses, a voltage-controlled current source has been created, and the created current source is a combination of voltage to current converter and current signal generator. Current positions and measuring voltages have been calculated using the designed control unit. However, the imaging algorithm requires sufficient data through the experimental work, which defines the cross-sectional image of resistivity. The cross-sectional image has been based on the Finite Element Method (FEM). It produces 2D/3D images, impedance distribution graphs and Mesh models. The proposed EIT system has been used for non-medical and industrial applications, which have non-invasive, inexpensive, radiation-free and a high potential for imaging modality.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3679 ◽  
Author(s):  
Mathieu Darnajou ◽  
Antoine Dupré ◽  
Chunhui Dang ◽  
Guillaume Ricciardi ◽  
Salah Bourennane ◽  
...  

The investigation of quickly-evolving flow patterns in high-pressure and high-temperature flow rigs requires the use of a high-speed and non-intrusive imaging technique. Electrical Impedance Tomography (EIT) allows reconstructing the admittivity distribution characterizing a flow from the knowledge of currents and voltages on its periphery. The need for images at high frame rates leads to the strategy of simultaneous multi-frequency voltage excitations and simultaneous current measurements, which are discriminated using fast Fourier transforms. The present study introduces the theory for a 16-electrode simultaneous EIT system, which is then built based on a field programmable gate array data acquisition system. An analysis of the propagation of uncertainties through the measurement process is investigated, and experimental results with fifteen simultaneous signals are presented. It is shown that the signals are successfully retrieved experimentally at a rate of 1953 frames per second. The associated signal-to-noise ratio varies from 59.6–69.1 dB, depending on the generated frequency. These preliminary results confirm the relevance and the feasibility of simultaneous multi-frequency excitations and measurements in EIT as a means to significantly increase the imaging rate.


2020 ◽  
pp. 147592172097230
Author(s):  
Mathias Haingartner ◽  
Sandra Gschoßmann ◽  
Max Cichocki ◽  
Martin Schagerl

In this article, we introduce a new current injection pattern for electrical impedance tomography. The pattern improves the quality of hole detection in carbon fiber reinforced polymer plates and allows the detection of delaminations. The new pattern is described in detail and compared to three widely used, classical injection patterns. The advantages of the new pattern are demonstrated by numerical finite element analyses for three test cases: a hole of 10-mm diameter, two simultaneous holes, and an ideal delamination in a circular region with a 50-mm diameter. The results are validated experimentally by comparing electrical impedance tomography measurements of a carbon fiber reinforced polymer plate with at first one, then two holes with a 10-mm diameter using classical patterns and the new pattern.


Sign in / Sign up

Export Citation Format

Share Document