scholarly journals Hierarchical control of trajectory planning and trajectory tracking for autonomous parallel parking

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Duoyang Qiu ◽  
Duoli Qiu ◽  
Bing Wu ◽  
Man Gu ◽  
Maofei Zhu
2019 ◽  
Vol 16 (1) ◽  
pp. 172988141983020 ◽  
Author(s):  
Shuhuan Wen ◽  
Xueheng Hu ◽  
Xiaohan Lv ◽  
Zongtao Wang ◽  
Yong Peng

NAO is the first robot created by SoftBank Robotics. Famous around the world, NAO is a tremendous programming tool and he has especially become a standard in education and research. Aiming at the large error and poor stability of the humanoid robot NAO manipulator during trajectory tracking, a novel framework based on fuzzy controller reinforcement learning trajectory planning strategy is proposed. Firstly, the Takagi–Sugeno fuzzy model based on the dynamic equation of the NAO right arm is established. Secondly, the design and the gain solution of the state feedback controller based on the parallel feedback compensation strategy are studied. Finally, the ideal trajectory of the motion is planned by reinforcement learning algorithm so that the end of the manipulator can track the desired trajectory and realize the valid obstacle avoidance. Simulation and experiment shows that the end of the manipulator based on this scheme has good controllability and stability and can meet the accuracy requirements of trajectory tracking accuracy, which verifies the effectiveness of the proposed framework.


2020 ◽  
Author(s):  
Liangyao Yu ◽  
Ze Ru ◽  
Zhenghong Lu ◽  
Guanqun Liang ◽  
Cenbo Xiong ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4253 ◽  
Author(s):  
Haoyao Chen ◽  
Fengyu Quan ◽  
Linxu Fang ◽  
Shiwu Zhang

Autonomous grasping with an aerial manipulator in the applications of aerial transportation and manipulation is still a challenging problem because of the complex kinematics/dynamics and motion constraints of the coupled rotors-manipulator system. The paper develops a novel aerial manipulation system with a lightweight manipulator, an X8 coaxial octocopter and onboard visual tracking system. To implement autonomous grasping control, we develop a novel and efficient approach that includes trajectory planning, visual trajectory tracking and kinematic compensation. Trajectory planning for aerial grasping control is formulated as a multi-objective optimization problem, while motion constraints and collision avoidance are considered in the optimization. A genetic method is applied to obtain the optimal solution. A kinematic compensation-based visual trajectory tracking is introduced to address the coupled affection between the manipulator and octocopter, with the advantage of discarding the complex dynamic parameter calibration. Finally, several experiments are performed to verify the effectiveness of the proposed approach.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4821
Author(s):  
Qinyu Sun ◽  
Yingshi Guo ◽  
Rui Fu ◽  
Chang Wang ◽  
Wei Yuan

Developing a human-like autonomous driving system has gained increasing amounts of attention from both technology companies and academic institutions, as it can improve the interpretability and acceptance of the autonomous system. Planning a safe and human-like obstacle avoidance trajectory is one of the critical issues for the development of autonomous vehicles (AVs). However, when designing automatic obstacle avoidance systems, few studies have focused on the obstacle avoidance characteristics of human drivers. This paper aims to develop an obstacle avoidance trajectory planning and trajectory tracking model for AVs that is consistent with the characteristics of human drivers’ obstacle avoidance trajectory. Therefore, a modified artificial potential field (APF) model was established by adding a road boundary repulsive potential field and ameliorating the obstacle repulsive potential field based on the traditional APF model. The model predictive control (MPC) algorithm was combined with the APF model to make the planning model satisfy the kinematic constraints of the vehicle. In addition, a human driver’s obstacle avoidance experiment was implemented based on a six-degree-of-freedom driving simulator equipped with multiple sensors to obtain the drivers’ operation characteristics and provide a basis for parameter confirmation of the planning model. Then, a linear time-varying MPC algorithm was employed to construct the trajectory tracking model. Finally, a co-simulation model based on CarSim/Simulink was established for off-line simulation testing, and the results indicated that the proposed trajectory planning controller and the trajectory tracking controller were more human-like under the premise of ensuring the safety and comfort of the obstacle avoidance operation, providing a foundation for the development of AVs.


Sign in / Sign up

Export Citation Format

Share Document