A CT Power Supply Device based on New Three Coil Magnetic Coupling Resonant Radio Power Transmission

Author(s):  
Duan Yubing ◽  
Zhang Hao ◽  
Li Pengfei ◽  
Ma Guoqing ◽  
Fu Yalin ◽  
...  





2014 ◽  
Vol 521 ◽  
pp. 485-489
Author(s):  
Hong Hao Fu ◽  
Guo Tian Cai ◽  
Dai Qing Zhao

This paper analyzes temporal and spatial process, and problems based on data between 1986 and 2010. Conclusions are as follows. Power supply of Guangdong relied more on distant outer-province power grids over time, not inner-province ones, close ones or independent power plants. This accelerating enlargement of power supply range could well satisfy its increasing power consumption. However, power production of western provinces couldnt simultaneously meet their own increasing demand and demand by Guangdong. Furthermore, total power transmission and electricity tariff were fixed by long-term framework agreements signed among governments, in which the transmission amount was too much while the tariff was too low, forcing the western provinces limiting their domestic demand without proper compensation. So the current enlarging trend of power supply range of Guangdong is unsustainable and its necessary to introduce power market mechanism through adjusting short-term total power transmission and power tariff according to the market situation.



2021 ◽  
Author(s):  
Sergey Goremykin

The textbook describes the main issues of the theory of relay protection and automation of electric power systems. The structure and functional purpose of protection devices and automation of power transmission lines of various configurations, synchronous generators, power transformers, electric motors and individual electrical installations are considered. For each of the types of protection of the above objects, the structure, the principle of operation, the order of selection of settings are given, the advantages and disadvantages are evaluated, indicating the scope of application. The manual includes material on complete devices based on semiconductor and microprocessor element bases. The progressive use of such devices (protection of the third and fourth generations) is appropriate and effective due to their significant advantages. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students in the areas of training 13.03.02 "Electric power and electrical engineering" (profile "Power supply", discipline "Relay protection and automation of electric power systems") and 35.03.06 "Agroengineering" (profile "Power supply and electrical equipment of agricultural enterprises", discipline "Relay protection of electrical equipment of agricultural objects"), as well as for graduate students and specialists engaged in the field of electrification and automation of industrial and agrotechnical objects.



2021 ◽  
pp. 1-10
Author(s):  
Xiaohong Yan ◽  
Zhigang Zhao ◽  
Yongqiang Liu

As the need of power supply is tremendously increasing in modern society, the stableness and reliability of the power delivery system are the two essential factors that ensure the power supply safety. With the quick expansion of electricity infrastructures, the failures of power transmission system are becoming more frequent, leading to economic loss and high risk of maintenance work under hazardous conditions. The existing automatic power line inspection utilizes advanced convolutional neural network (CNN) to improve the inspection efficiency, emerging as one promising solution. But the needed computational complexity is high since CNN inference demands large amount of multiplication-and-accumulation operations. In this paper, we alleviate this problem by utilizing the heterogeneous computing techniques to design a real-time on-site inspection system. Firstly, the required computational complexity of CNN inference is reduced using FFT-based convolution algorithms, speeding up the inference. Then we utilize the region of interest (ROI) extrapolation to predict the object detection bounding boxes without CNN inference, thus saving computing power. Finally, a heterogeneous computing architecture is presented to accommodate the requirements of proposed algorithms. According to the experiment results, the proposed design significantly improves the frame rate of CNN-based inspection visual system applied to power line inspection. The processing frame rate is also drastically improved. Moreover, the precision loss is negligible which means our proposed schemes are applicable for real application scenarios.



2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.



Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1963 ◽  
Author(s):  
Xuan-Tu Cao ◽  
Wan-Young Chung

Recently, radio frequency (RF) energy harvesting (RFEH) has become a promising technology for a battery-less sensor module. The ambient RF radiation from the available sources is captured by receiver antennas and converted to electrical energy, which is used to supply smart sensor modules. In this paper, an enhanced method to improve the efficiency of the RFEH system using strongly coupled electromagnetic resonance technology was proposed. A relay resonator was added between the reader and tag antennas to improve the wireless power transmission efficiency to the sensor module. The design of the relay resonator was based on the resonant technique and near-field magnetic coupling concept to improve the communication distance and the power supply for a sensor module. It was designed such that the self-resonant frequencies of the reader antenna, tag antenna, and the relay resonator are synchronous at the HF frequency (13.56MHz). The proposed method was analyzed using Thevenin equivalent circuit, simulated and experimental validated to evaluate its performance. The experimental results showed that the proposed harvesting method is able to generate a great higher power up to 10 times than that provided by conventional harvesting methods without a relay resonator. Moreover, as an empirical feasibility test of the proposed RF energy harvesting device, a smart sensor module which is placed inside a meat box was developed. It was utilized to collect vital data, including temperature, relative humidity and gas concentration, to monitor the freshness of meat. Overall, by exploiting relay resonator, the proposed smart sensor tag could continuously monitor meat freshness without any batteries at the innovative maximum distance of approximately 50 cm.



Sign in / Sign up

Export Citation Format

Share Document