Lyapunov Function-Based Stabilizing Control Scheme for Wireless Power Transfer Systems with LCC Compensation Network

Author(s):  
Abu Shahir Md. Khalid Hasan ◽  
Indra Bhogaraju ◽  
Mehdi Farasat ◽  
Michael Malisoff
Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 281 ◽  
Author(s):  
Xin Liu ◽  
Nan Jin ◽  
Xijun Yang ◽  
Khurram Hashmi ◽  
Dianguan Ma ◽  
...  

Battery charging is a fundamental application of Wireless Power Transfer (WPT) systems that requires effective implementation of Constant Current (CC) and Constant Voltage (CV) power conduction modes. DC-DC converters used in WPT systems utilize large inductors and capacitors that increase the size and volume of the system in addition to causing higher DC losses. This work proposes a novel single-switch active rectifier for phase controlled WPT systems that is smaller in volume and weight as compared to conventional WPT topologies. The proposed method simplifies the control scheme using improved Digital Phase Control (DPC) and Analog Phase Control (APC) to realize the CC and CV power transfer modes. Furthermore, it prevents forward voltage losses in Silicon Carbide (SiC) switches and shoot through states with improved switching patterns. Simulation studies and experimental results are added to verify the effectiveness of the proposed methodology.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4488 ◽  
Author(s):  
Nguyen Minh Tran ◽  
Muhammad Miftahul Amri ◽  
Je Hyeon Park ◽  
Sa Il Hwang ◽  
Dong In Kim ◽  
...  

We propose and implement a novel 1-bit coding metasurface that is capable of focusing and steering beam for enhancing power transfer efficiency of the electromagnetic (EM) wave-based wireless power transfer systems. The proposed metasurface comprises 16 × 16 unit cells which are designed with a fractal structure and the operating frequency of 5.8 GHz. One PIN diode is incorporated within each unit cell and enables two states with 180 ° phase change of the reflected signal at the unit cell. The two states of the unit cell correspond to the ON and OFF states of the PIN diode or “0” and “1” coding in the metasurface. By appropriately handling the ON/OFF states of the coding metasurface, we can control the reflected EM wave impinged on the metasurface. To verify the working ability of the coding metasurface, a prototype metasurface with a control board has been fabricated and measured. The results showed that the coding metasurface is capable of focusing beam to desired direction. For practical scenarios, we propose an adaptive optimal phase control scheme for focusing the beam to a mobile target. Furthermore, we prove that the proposed adaptive optimal phase control scheme outperforms the random phase control and beam synthesis schemes.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2959
Author(s):  
Wenjie Chen ◽  
Jia Liu ◽  
Si Chen ◽  
Liyan Zhang

This paper proposes an energy shaping controller of a DC/DC converter for automatic guided vehicles (AGVs) wireless power transfer (WPT). A transformer is inserted after the LCC topology to improve the transfer power, and the DC/DC boost converter is added before this topology to obtain desired systematic power dynamically. The system power transfer model is derived based on the idea of voltage transformation and the desired power can be implemented indirectly through regulating desired output voltage of DC/DC converter. With the proposed controller, this WPT system will have a much better dynamic performance and the effective working time can be increased significantly. Furthermore, this paper proposes dynamical regulation strategy for output power to get real time target power according to the charging curve of the battery. Simulation and experimental results verified the control performance of the proposed control scheme. A WPT prototype with power up to 1.65 kW was built, and 92.12% efficiency from DC power source to battery load is achieved, which is 4% higher than that obtained by the conventional PID method.


Sign in / Sign up

Export Citation Format

Share Document