EBG reflector-backed MIMO antenna with wideband isolation and uni-directional radiation pattern MIMO antenna for MIMO radar

Author(s):  
Ming-Hung Hsu ◽  
Tzu-Chun Tang ◽  
Ken-Huang Lin
2014 ◽  
Vol 50 (18) ◽  
pp. 1261-1262 ◽  
Author(s):  
Han Wang ◽  
Longsheng Liu ◽  
Zhijun Zhang ◽  
Zhenghe Feng

Author(s):  
Melvin Chamakalayil Jose ◽  
Radha Sankararajan ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract In the proposed research paper, a novel compact, ultra-wideband electronically switchable dual-band omnidirectional to directional radiation pattern microstrip planar printed rectangular monopole antenna (PRMA) has been presented. The proposed antenna system has an optimum size of 0.26 λ0 × 0.28 λ0. A combination of radiators, reflectors, and two symmetrical grounds does place on the same layer of the rectangular microstrip PRMA. The frequency agility and the radiation pattern from omnidirectional to directional are achieved using two SMD PIN diodes (SMP1340-04LF). The directional radiation patterns with 180° phase shifts are achieved at the C-band frequency spectrum. The parametric study of the proposed antenna system was performed for different design parameters, and the antenna characteristics were analyzed. An antenna prototype is fabricated using the printed circuit board etching method by using RMI UV laser etching and cutting tools. The measurements of the proposed antenna are conducted in an anechoic chamber to validate the simulations. There are three states of operations due to two SMD PIN diodes being used in switching circuits. In state-I, the proposed antenna radiates at 6.185 GHz (5.275–6.6 75 GHz) in the Ф = 270° direction with a gain of 2.1 dBi, whereas in state-II, it radiates at 5.715 GHz (5.05–6.8 GHz) in the Ф = 90° direction with a gain of 2.1 dBi. In state-III, the antenna exhibits the X-band frequency with center frequency at 9.93 GHz (8.845–10.49 GHz), and the omnidirectional pattern offers a gain of 4.1 dBi. The features of the proposed antenna are suitable for high-speed wireless sensor network communication in industries such as chemical reactors in oil and gas and pharmaceuticals. It is also well suited for IoT and 5G-sub-6-GHz applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyyed Mohammad Mehdi Moshiri ◽  
Najmeh Nozhat

AbstractIn this paper, an optical smart multibeam cross dipole nano-antenna has been proposed by combining the absorption characteristic of graphene and applying different arrangements of directors. By introducing a cross dipole nano-antenna with two V-shaped coupled elements, the maximum directivity of 8.79 dBi has been obtained for unidirectional radiation pattern. Also, by applying various arrangements of circular sectors as director, different types of radiation pattern such as bi- and quad-directional have been attained with directivities of 8.63 and 8.42 dBi, respectively, at the wavelength of 1550 nm. The maximum absorption power of graphene can be tuned by choosing an appropriate chemical potential. Therefore, the radiation beam of the proposed multibeam cross dipole nano-antenna has been controlled dynamically by applying a monolayer graphene. By choosing a suitable chemical potential of graphene for each arm of the suggested cross dipole nano-antenna without the director, the unidirectional radiation pattern shifts ± 13° at the wavelength of 1550 nm. Also, for the multibeam nano-antenna with different arrangements of directors, the bi- and quad-directional radiation patterns have been smartly modified to uni- and bi-directional ones with the directivities of 10.1 and 9.54 dBi, respectively. It is because of the graphene performance as an absorptive or transparent element for different chemical potentials. This feature helps us to create a multipath wireless link with the capability to control the accessibility of each receiver.


2015 ◽  
Vol 22 (10) ◽  
pp. 1609-1613 ◽  
Author(s):  
Aboulnasr Hassanien ◽  
Sergiy A. Vorobyov ◽  
Arash Khabbazibasmenj

Author(s):  
Ashish Singh ◽  
Krishnananda Shet ◽  
Durga Prasad

In this chapter, ultra wide band angular ring antenna has been proposed for wireless applications. It has been observed that antenna resonate from 2.9 to 13.1 GHz which has 10.2 GHz bandwidth. Further, it is observed that antenna has nearly omni-directional radiation pattern for E and H-plane at 3.5, 5.8, and 8.5 GHz. The theoretical analysis of the proposed has been done using circuit theory analysis. It was also found using simulation that antenna has good input and output response of 0.2 ns. Proposed antenna measured, simulated, and theoretical results matches for antenna characteristics, i.e., reflection coefficient and radiation pattern. Bandwidth of antenna lies between 2.9 and 13.1 GHz, so this antenna is suitable for Wi-Fi, Wi-Max, digital communication system (DCS), satellite communication, and 5G applications.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5678
Author(s):  
Jiahao Zhang ◽  
Jin Meng ◽  
Wei Li ◽  
Sen Yan ◽  
Guy A. E. Vandenbosch

A novel wearable button antenna sensor is proposed for the concept of simultaneous wireless information and power transfer (SWIPT). This integrates two working modes for the transfer of power and information, respectively, and optimizes transfer efficiency. An omni-directional radiation pattern is achieved in the 3.5 GHz World Interoperability for Microwave Access (WiMAX) band to support on-body wireless communications, while a circularly polarized broadside radiation pattern is obtained in the 5 GHz wireless local area networks (WLAN) band to harvest power. The measured −10 dB return loss bandwidths are 4.0% (3.47–3.61 GHz) in the lower band, and 25.0% (4.51–5.80 GHz) in the higher band, respectively. An artificial magnetic conductor (AMC) structure with wideband characteristics is applied to obtain a low-profile design and to increase the stability of the antenna sensor. A high radiation efficiency of over 80% in the whole working band is observed. The specific absorption rate (SAR) of the proposed antenna sensor is below 0.509 W/kg at 3.55 GHz, and below 0.0532 W/kg at 5.5 GHz, respectively, which is much lower than the European standard threshold of 2 W/kg. All these characteristics make the designed antenna sensor suitable for on-body information transmission and off-body energy harvesting. The antenna sensor has been prototyped. Simulations and measurements agree well, proving the validity of the new concept.


Sign in / Sign up

Export Citation Format

Share Document