Evaluation of Thermal Performance Factor of Novel Two-Pass, Ribbed, U-Shaped Channel for Solar Air Heater

Author(s):  
Tareq Salameh ◽  
Waseem Siddiuue ◽  
Aneeq Raheem ◽  
Abdul Hai Al Alami
Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8593
Author(s):  
Muneerah Al Nuwairan ◽  
Basma Souayeh

This numerical investigation presents the effects of the position of baffles in the shape of a circle’s segment placed inside a circular channel to improve the thermal and flow performance of a solar air heater. Three different baffles’ positions with Reynolds number varying between 10,000 to 50,000 were investigated computationally. The k-omega SST model was used for solving the governing equations. Air was taken as the working fluid. Three pitch ratios (Y = 3, 4, and 5) were considered, while the height of the baffles remained fixed. The result showed an enhancement in Nusselt number, friction factor, j-factor, and thermal performance factor. Staggered exit-length baffles showed maximum enhancement in heat transfer and pressure drop, while inline inlet-length baffles showed the least enhancement. For a pitch ratio of Y = 3.0, the enhancement in all parameters was the highest, while for Y = 5.0, the enhancement in all parameters was the least. The highest thermal performance factor of 1.6 was found for SEL at Y = 3.0.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Satyender Singh ◽  
Prashant Dhiman

Thermal performance of a single-pass single-glass cover solar air heater consisting of semicircular absorber plate finned with rectangular longitudinal fins is investigated. The analysis is carried out for different hydraulic diameters, which were obtained by varying the diameter of the duct from 0.3–0.5 m. One to five numbers of fins are considered. Reynolds number ranges from 1600–4300. Analytical solutions for energy balance equations of different elements and duct flow of the solar air heater are presented; results are compared with finite-volume methodology based numerical solutions obtained from ansys fluent commercial software, and a fairly good agreement is achieved. Moreover, analysis is extended to check the effect of double-glass cover and the recycle of the exiting air. Results revealed that the use of double-glass cover and recycle operation improves the thermal performance of solar air heater.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


Solar Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 969-977
Author(s):  
Binguang Jia ◽  
Fang Liu ◽  
Xiao Li ◽  
Andi Qu ◽  
Qingfeng Cai

Sign in / Sign up

Export Citation Format

Share Document