Measuring Metastability with Free-Running Clocks

Author(s):  
Robert Najvirt ◽  
Thomas Polzer ◽  
Andreas Steininger
Keyword(s):  
2013 ◽  
Vol E96.C (2) ◽  
pp. 241-244
Author(s):  
Ryuta YAMANAKA ◽  
Taka FUJITA ◽  
Hideyuki SOTOBAYASHI ◽  
Atsushi KANNO ◽  
Tetsuya KAWANISHI

Author(s):  
O. Breitenstein ◽  
J.P. Rakotoniaina ◽  
F. Altmann ◽  
J. Schulz ◽  
G. Linse

Abstract In this paper new thermographic techniques with significant improved temperature and/or spatial resolution are presented and compared with existing techniques. In infrared (IR) lock-in thermography heat sources in an electronic device are periodically activated electrically, and the surface is imaged by a free-running IR camera. By computer processing and averaging the images over a certain acquisition time, a surface temperature modulation below 100 µK can be resolved. Moreover, the effective spatial resolution is considerably improved compared to stead-state thermal imaging techniques, since the lateral heat diffusion is suppressed in this a.c. technique. However, a serious limitation is that the spatial resolution is limited to about 5 microns due to the IR wavelength range of 3 -5 µm used by the IR camera. Nevertheless, we demonstrate that lock-in thermography reliably allows the detection of defects in ICs if their power exceeds some 10 µW. The imaging can be performed also through the silicon substrate from the backside of the chip. Also the well-known fluorescent microthermal imaging (FMI) technique can be be used in lock-in mode, leading to a temperature resolution in the mK range, but a spatial resolution below 1 micron.


2019 ◽  
Vol 82 (4) ◽  
pp. 1331-1342 ◽  
Author(s):  
Haikun Qi ◽  
Olivier Jaubert ◽  
Aurelien Bustin ◽  
Gastao Cruz ◽  
Huijun Chen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 410
Author(s):  
Yu-Hsien Lin ◽  
Yu-Ting Lin ◽  
Yen-Jun Chiu

On the basis of a full-appendage DARPA SUBOFF model (DTRC model 5470), a scale (λ = 0.535) semi-autonomous submarine free-running model (SFRM) was designed for testing its manoeuvrability and stability in the constrained water. Prior to the experimental tests of the SFRM, a six-degree-of-freedom (6-DOF) manoeuvre model with an autopilot system was developed by using logic operations in MATLAB. The SFRM’s attitude and its trim polygon were presented by coping with the changes in mass and trimming moment. By adopting a series of manoeuvring tests in empty tanks, the performances of the SFRM were introduced in cases of three sailing speeds. In addition, the PD controller was established by considering the simulation results of these manoeuvring tests. The optimal control gains with respect to each manoeuvring test can be calculated by using the PID tuner in MATLAB. Two sets of control gains derived from the optimal characteristics parameters were compared in order to decide on the most appropriate PD controller with the line-of-sight (LOS) guidance algorithm for the SFRM in the autopilot simulation. Eventually, the simulated trajectories and course angles of the SFRM would be illustrated in the post-processor based on the Cinema 4D modelling.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Author(s):  
Janne Burman ◽  
L. Pekka Malmberg ◽  
Sami Remes ◽  
Tuomas Jartti ◽  
Anna S. Pelkonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document