Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors

Author(s):  
Hung-Yao Chi ◽  
Kuen-Jong Lee ◽  
Tzu-Chun Jao
IEEE Micro ◽  
2012 ◽  
Vol 32 (3) ◽  
pp. 79-87 ◽  
Author(s):  
Doe Hyun Yoon ◽  
N. Muralimanohar ◽  
Jichuan Chang ◽  
P. Ranganathan ◽  
Norman P. Jouppi ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Franca Rosa Guerini ◽  
Matteo Cesari ◽  
Beatrice Arosio

AbstractThe risk of serious complications and the fatality rate due to COVID-19 pandemic have proven particularly higher in older persons, putting a further strain in healthcare system as we dramatically observed.COVID-19 is not exclusively gerophile (géro “old” and philia “love”) as young people can be infected, even if older people experience more severe symptoms and mortality due to their greater frailty. Indeed, frailty could complicate the course of COVID-19, much more than the number of years lived. As demonstration, there are centenarians showing remarkable capacity to recover after coronavirus infection.We hypothesize that centenarian’s portfolio could help in identifying protective biological mechanisms underlying the coronavirus infection.The human leukocyte antigen (HLA) is one of the major genetic regions associated with human longevity, due to its central role in the development of adaptive immune response and modulation of the individual’s response to life threatening diseases. The HLA locus seems to be crucial in influencing susceptibility and severity of COVID-19.In this hypothesis, we assume that the biological process in which HLA are involved may explain some aspects of coronavirus infection in centenarians, although we cannot rule out other biological mechanisms that these extraordinary persons are able to adopt to cope with the infection.


Author(s):  
Emma-Jane Goode ◽  
Eirian Thomas ◽  
Owen Landeg ◽  
Raquel Duarte-Davidson ◽  
Lisbeth Hall ◽  
...  

AbstractEvery year, numerous environmental disasters and emergencies occur across the globe with far-reaching impacts on human health and the environment. The ability to rapidly assess an environmental emergency to mitigate potential risks and impacts is paramount. However, collating the necessary evidence in the early stages of an emergency to conduct a robust risk assessment is a major challenge. This article presents a methodology developed to help assess the risks and impacts during the early stages of such incidents, primarily to support the European Union Civil Protection Mechanism but also the wider global community in the response to environmental emergencies. An online rapid risk and impact assessment tool has also been developed to promote enhanced collaboration between experts who are working remotely, considering the impact of a disaster on the environment and public health in the short, medium, and long terms. The methodology developed can support the appropriate selection of experts and assets to be deployed to affected regions to ensure that potential public health and environmental risks and impacts are mitigated whenever possible. This methodology will aid defensible decision making, communication, planning, and risk management, and presents a harmonized understanding of the associated impacts of an environmental emergency.


Author(s):  
Zice Sun ◽  
Yingjie Wang ◽  
Zhipeng Cai ◽  
Tianen Liu ◽  
Xiangrong Tong ◽  
...  

Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Li Wen ◽  
Kaikai Cheng ◽  
...  

Abstract Soil organic matter (SOM) and its fractions play an important role in maintaining or improving soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime on six functional SOM fractions under a double-cropping rice paddy field of southern China were studied in the current paper. The field experiment included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control (CK). The results showed that coarse unprotected particulate organic matter (cPOM), biochemically, physically–biochemically and chemically protected silt-sized fractions (NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2% of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with control, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction, pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7, 117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different fractions was biochemically protected, followed by chemically and unprotected, and physically protected were the smallest. These results suggested that a physical protection mechanism plays an important role in stabilizing C of paddy soil. In summary, the results showed that higher functional SOM fractions and physical protection mechanism play an important role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.


Sign in / Sign up

Export Citation Format

Share Document