Time-domain manipulating of short-time chirps

Author(s):  
Toivo Paavle ◽  
Mart Min
Keyword(s):  
Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6837
Author(s):  
Fabio Corti ◽  
Michelangelo-Santo Gulino ◽  
Maurizio Laschi ◽  
Gabriele Maria Lozito ◽  
Luca Pugi ◽  
...  

Classic circuit modeling for supercapacitors is limited in representing the strongly non-linear behavior of the hybrid supercapacitor technology. In this work, two novel modeling techniques suitable to represent the time-domain electrical behavior of a hybrid supercapacitor are presented. The first technique enhances a well-affirmed circuit model by introducing specific non-linearities. The second technique models the device through a black-box approach with a neural network. Both the modeling techniques are validated experimentally using a workbench to acquire data from a real hybrid supercapacitor. The proposed models, suitable for different supercapacitor technologies, achieve higher accuracy and generalization capabilities compared to those already presented in the literature. Both modeling techniques allow for an accurate representation of both short-time domain and steady-state simulations, providing a valuable asset in electrical designs featuring supercapacitors.


Author(s):  
Eva Lagunas ◽  
Monica Navarro ◽  
Pau Closas ◽  
Montse Najar ◽  
Ricardo Garcia-Gutierrez ◽  
...  

IR-UWB has emerged as a promising candidate for positioning passive nodes in wireless networks due to its extremely short time domain transmitted pulses. The two-step approaches in which first different TOAs are estimated and then fed into a triangulation procedure are suboptimal in general. This is because in the first stage of these methods, the measurements at distinct anchors are independent and ignore the constraint that all measurements must be consistent with a single emitter location. In this chapter, the authors investigate two techniques to overcome this issue. First, a two-step procedure based on multi-TOA estimation is proposed. Second, a positioning approach omitting the intermediate known as DPE is presented. Complementarily, the authors explore the CS-based modeling of both approaches so that the temporal sparsity of the UWB received signal and the consequent sparseness of the discrete spatial domain are exploited to select the most significant TOAs and to reduce the amount of information to be sent to a central fusion unit in the DPE approach.


2010 ◽  
Vol 154-155 ◽  
pp. 453-456
Author(s):  
Li Jun Liu ◽  
Qi Wang ◽  
Lan Hu

Many important time-domain characteristic parameters are extracted through the short-time analysis of arc sound signal in MIG butt welding with spray transfer, which can be used for the diagnosis on the weld penetration status. And the short-time autocorrelation function and short-time average amplitude difference function are adopted to pitch estimation. The analysis results show that the penetration status can be accurately recognized via the short-time energy, average magnitude, average zero-crossing and zero-to-energy and so on. Meanwhile, the pitch estimation of arc sound signal in experiments is at 220 points, that is 5 ms or 200 Hz in cycle. The methods and results provide a foundation for the diagnosis on penetration based on analysis of arc sound signal and have great theoretical meaning and practical value.


Author(s):  
Hideki Banno ◽  
Jinlin Lu ◽  
Satoshi Nakamura ◽  
Kiyohiro Shikano ◽  
Hideki Kawahara

2017 ◽  
Vol 42 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Henryk Majchrzak ◽  
Andrzej Cichoń ◽  
Sebastian Borucki

Abstract This paper provides an example of the application of the acoustic emission (AE) method for the diagnosis of technical conditions of a three-phase on-load tap-changer (OLTC) GIII type. The measurements were performed for an amount of 10 items of OLTCs, installed in power transformers with a capacity of 250 MVA. The study was conducted in two different OLTC operating conditions during the tapping process: under load and free running conditions. The analysis of the measurement results was made in both time domain and time-frequency domain. The description of the AE signals generated by the OLTC in the time domain was performed using the analysis of waveforms and determined characteristic times. Within the time-frequency domain the measured signals were described by short-time Fourier transform spectrograms.


Sign in / Sign up

Export Citation Format

Share Document