Construction of retinal vascular trees via curvature orientation prior

Author(s):  
Xingzheng Lyu ◽  
Qifan Yang ◽  
Shunren Xia ◽  
Sanyuan Zhang
Keyword(s):  
2006 ◽  
Vol 290 (2) ◽  
pp. H894-H903 ◽  
Author(s):  
Ghassan S. Kassab

The branching pattern and vascular geometry of biological tree structure are complex. Here we show that the design of all vascular trees for which there exist morphometric data in the literature (e.g., coronary, pulmonary; vessels of various skeletal muscles, mesentery, omentum, and conjunctiva) obeys a set of scaling laws that are based on the hypothesis that the cost of construction of the tree structure and operation of fluid conduction is minimized. The laws consist of scaling relationships between 1) length and vascular volume of the tree, 2) lumen diameter and blood flow rate in each branch, and 3) diameter and length of vessel branches. The exponent of the diameter-flow rate relation is not necessarily equal to 3.0 as required by Murray's law but depends on the ratio of metabolic to viscous power dissipation of the tree of interest. The major significance of the present analysis is to show that the design of various vascular trees of different organs and species can be deduced on the basis of the minimum energy hypothesis and conservation of energy under steady-state conditions. The present study reveals the similarity of nature's scaling laws that dictate the design of various vascular trees and the underlying physical and physiological principles.


2011 ◽  
Vol 110 (4) ◽  
pp. 1119-1129 ◽  
Author(s):  
Robb W. Glenny

The bronchial, arterial, and venous trees of the lung are complex interwoven structures. Their geometries are created during fetal development through common processes of branching morphogenesis. Insights from fractal geometry suggest that these extensively arborizing trees may be created through simple recursive rules. Mathematical models of Turing have demonstrated how only a few proteins could interact to direct this branching morphogenesis. Development of the airway and vascular trees could, therefore, be considered an example of emergent behavior as complex structures are created from the interaction of only a few processes. However, unlike inanimate emergent structures, the geometries of the airway and vascular trees are highly stereotyped. This review will integrate the concepts of emergence, fractals, and evolution to demonstrate how the complex branching geometries of the airway and vascular trees are ideally suited for gas exchange in the lung. The review will also speculate on how the heterogeneity of blood flow and ventilation created by the vascular and airway trees is overcome through their coordinated construction during fetal development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peilun Li ◽  
Qing Pan ◽  
Sheng Jiang ◽  
Molei Yan ◽  
Jing Yan ◽  
...  

Blood perfusion is an important index for the function of the cardiovascular system and it can be indicated by the blood flow distribution in the vascular tree. As the blood flow in a vascular tree varies in a large range of scales and fractal analysis owns the ability to describe multi-scale properties, it is reasonable to apply fractal analysis to depict the blood flow distribution. The objective of this study is to establish fractal methods for analyzing the blood flow distribution which can be applied to real vascular trees. For this purpose, the modified methods in fractal geometry were applied and a special strategy was raised to make sure that these methods are applicable to an arbitrary vascular tree. The validation of the proposed methods on real arterial trees verified the ability of the produced parameters (fractal dimension and multifractal spectrum) in distinguishing the blood flow distribution under different physiological states. Furthermore, the physiological significance of the fractal parameters was investigated in two situations. For the first situation, the vascular tree was set as a perfect binary tree and the blood flow distribution was adjusted by the split ratio. As the split ratio of the vascular tree decreases, the fractal dimension decreases and the multifractal spectrum expands. The results indicate that both fractal parameters can quantify the degree of blood flow heterogeneity. While for the second situation, artificial vascular trees with different structures were constructed and the hemodynamics in these vascular trees was simulated. The results suggest that both the vascular structure and the blood flow distribution affect the fractal parameters for blood flow. The fractal dimension declares the integrated information about the heterogeneity of vascular structure and blood flow distribution. In contrast, the multifractal spectrum identifies the heterogeneity features in blood flow distribution or vascular structure by its width and height. The results verified that the proposed methods are capable of depicting the multi-scale features of the blood flow distribution in the vascular tree and further are potential for investigating vascular physiology.


2017 ◽  
Vol 1 (4) ◽  
pp. 6-15
Author(s):  
Francesco Calivá ◽  
Georgios Leontidis ◽  
Piotr Chudzik ◽  
Andrew Hunter ◽  
Luca Antiga ◽  
...  

Purpose: In this study, it is shown that hemodynamic features are applicable as biomarkers to evaluate the progression of diabetic retinopathy (DR). Methods: Ninety-six fundus images from twenty-four subjects were selected. For each patient, four photographs were captured during the three years before DR and in the first year of DR. The vascular trees, which consisted of a parent vessel and two child branches were extracted, and at the branching nodes, the fluid dynamic conditions were estimated. Results: Veins were mostly affected during the last stage of diabetes before DR. In the arteries, the blood flow in both child branches and the Reynolds number in the smaller child branch were mostly affected. Conclusion: This study showed that hemodynamic features can add further information to the study of the progression of DR.


2012 ◽  
Vol 107 (2) ◽  
pp. 140-154 ◽  
Author(s):  
Marek Kociński ◽  
Artur Klepaczko ◽  
Andrzej Materka ◽  
Martha Chekenya ◽  
Arvid Lundervold

2002 ◽  
Author(s):  
Christian H. Riedel ◽  
Siang C. Chuah ◽  
Mair Zamir ◽  
Erik L. Ritman

2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Jun Lai ◽  
Ying Huang ◽  
Ying Wang ◽  
Jun Wang

2002 ◽  
Vol 44 (4) ◽  
pp. 360-374 ◽  
Author(s):  
Gary S. Krenz ◽  
Christopher A. Dawson

1994 ◽  
Author(s):  
Piotr Jasiobedzki ◽  
Christopher K. I. Williams ◽  
Feng Lu

2020 ◽  
Author(s):  
Marie Xun Wang ◽  
Lori Ray ◽  
Kenji F. Tanaka ◽  
Jeffrey J. Iliff ◽  
Jeffrey Heys

AbstractThe glymphatic system is a recently defined brain-wide network of perivascular spaces along which cerebrospinal fluid (CSF) and interstitial solutes exchange. Astrocyte endfeet encircling the perivascular space form a physical barrier in between these two compartments, and fluid and solutes that are not taken up by astrocytes move out of the perivascular space through the junctions in between astrocyte endfeet. However, little is known about the anatomical structure and the physiological roles of the astrocyte endfeet in regulating the local perivascular exchange. Here, visualizing astrocyte endfoot-endfoot junctions with immunofluorescent labeling against the protein megalencephalic leukoencephalopathy with subcortical cysts-1 (MLC1), we characterized endfoot dimensions along the mouse cerebrovascular tree. We observed marked heterogeneity in endfoot dimensions along vessels of different sizes, and of different types. Specifically, endfoot size was positively correlated with the vessel diameters, with large vessel segments surrounded by large endfeet and small vessel segments surrounded by small endfeet. This association was most pronounced along arterial, rather than venous segments. Computational modeling simulating vascular trees with uniform or varying endfeet dimensions demonstrates that varying endfoot dimensions maintain near constant perivascular-interstitial flux despite correspondingly declining perivascular pressures along the cerebrovascular tree through the cortical depth. These results describe a novel anatomical feature of perivascular astroglial endfeet and suggest that endfoot heterogeneity may be an evolutionary adaptation to maintain perivascular CSF-interstitial fluid exchange through deep brain structures.


Sign in / Sign up

Export Citation Format

Share Document