Static silicon frequency divider for low power consumption (4 mW, 10 GHz) and high-speed (160 mW, 19 GHz)

Author(s):  
A. Felder ◽  
J. Hauenschild ◽  
R. Mahnkopf ◽  
H.-M. Rein
Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2012 ◽  
Vol 9 (24) ◽  
pp. 1900-1905
Author(s):  
Kamran Delfan Hemmati ◽  
Mojtaba Behzad Fallahpour ◽  
Abbas Golmakani ◽  
Kamyar Delfan Hemmati

2020 ◽  
Vol 2 (9) ◽  
pp. 4172-4178
Author(s):  
Matias Kalaswad ◽  
Bruce Zhang ◽  
Xuejing Wang ◽  
Han Wang ◽  
Xingyao Gao ◽  
...  

Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories.


2014 ◽  
Vol 93 ◽  
pp. 4-7 ◽  
Author(s):  
Yifeng Hu ◽  
Xiaoyi Feng ◽  
Jiwei Zhai ◽  
Ting Wen ◽  
Tianshu Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document