Preclinical studies of S1 in K562 cell line and primary chronic myeloid leukemia cells shown synergistic effect with Cytosine Arabinoside Hydrochloride

Author(s):  
WenJuan Chen ◽  
ZhiChao Zhang ◽  
Wei Han ◽  
ChangJi Yuan ◽  
PeiRan Xu ◽  
...  
1976 ◽  
Vol 18 (4) ◽  
pp. 421-431 ◽  
Author(s):  
Eva Klein ◽  
Farkas Vánky ◽  
Hannah Ben-Bassat ◽  
Hava Neumann ◽  
Peter Ralph ◽  
...  

2018 ◽  
Vol 7 ◽  
pp. e1008
Author(s):  
Mehrdad Hashemi ◽  
Nooshin Samadian

Background: Diet plays an important role in cancer prevention. Apigenin, a flavonoid with thechemical formula C15H10O5, is abundantly present in vegetables. Vegetarian foods containing flavonoids are rich sources of bioactive compounds. Flavonoids have been utilized in herbal treatment. Nanogels are drug delivery systems based on polymers and are used in tissue engineering and for drug delivery. This study was conducted to compare the effects of apigenin and a nanodrug on the viability of the K562 cell line of chronic myeloid leukemia at different durations under laboratory conditions. Materials and Methods: Chitosan was first dissolved in 1% acetic acid, and  ethylene dichloride EDC and NHS were added to the solution. Then, the nanodrug was prepared by loading apigenin into stearate–chitosan nanogel (scs nanogel), and its physical and morphological characteristics were evaluated by TEM, DLS, and FTIR. Trypan blue staining, MTT assay, and flow cytometry were used to analyze the effects of various concentrations of apigenin and apigenin-loaded chitosan–stearate nanogel (APG–SCS) at 24, 48, and 72 h after they were applied to the K562 cell line. Results: The diameter of the nanodrug particles was measured using DLS and confirmed by TEM. The K562 cells treated with APG–SCS and with apigenin exhibited significant differences compared with the control (P < 0.05). Apoptosis was detected by flow cytometry. Conclusion: This study showed that the toxic effects of apigenin and the nanodrug improved with increasing concentrations and exposure durations compared to those in the control.The toxic effect of apigenin loaded into the stearate-chitosan nanogel was greater than apigenin, and the toxic effects of both materials were greater compared to the control under laboratory conditions.[GMJ.2018;7:e1008]


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4928-4928
Author(s):  
Bing Xu ◽  
Feili Chen ◽  
Yuejian Liu ◽  
Shiyun Wang ◽  
Rongwei Li ◽  
...  

Abstract Background The emergence of Imatinib has brought a new era for the treatment of chronic myeloid leukemia. However, resistant to Imatinib might lead to the treatment failure and death of patients. Thus, finding a drug which could enhance the Imatinib-induced apoptosis in vitro could provide the experimental base for the treatment of chronic myeloid leukemia. K562 cell line is a common cell line used in the study of chronic myeloid leukemia while K562/G cell line which is resistant to Imatinib is derived from K562 cell line. Aim This study aims to explore whether low-dose Triptolide(TPL) could enhance the Imatinib-induced apoptosis in K562/G cells and related mechanism. Methods K562/G cells were subjected to different treatments and thereafter MTT assay, flow cytometry and Western blot or RT-PCR were used to determine IC50, apoptotic status and expression of Nrf2, HIF-1α and their target genes. Results Triptolide is highly cytotoxic to K562/G cells in a concentration-dependent manner. To determine the combination effect of TPL and anticancer agents, K562/G cells were exposed to Imatinib(50μM) with or without TPL (25nM) for 24h. The apoptotic cells were determined by PI/Annexin V staining and flow cytometric analysis. Apoptotic ratio of cells treated by Imatinib together with TPL is significantly increased compared to cells treated by Imatinib alone (24.78±1.12 vs. 77.52±7.75, P<0.01). Next, the underlying mechanism was investigated. High expression of Hypoxia-inducible factor-1α (HIF-1α) has been shown to be related with bad clinical outcome in patients while Nrf2 is responsible for chemo-resistanct in cancer cells. Imatinib in combination with TPL could decrease Nrf2 and HIF-1α expression at protein and mRNA levels. Down-stream genes of Nrf2 e.g NQO1, GSR and HO-1 as well as target genes of HIF-1α e.g BNIP3, VEGF and CAIX are also down-regulated at mRNA level. Conclusion TPL could significantly increase the Imatinib-induced apoptotic ratio in K562/G cells through down-regulation of HIF-1α and Nrf2. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 22 (4) ◽  
pp. 439-440 ◽  
Author(s):  
Yukiko KOISO ◽  
Yasuyuki FUJIMOTO ◽  
Daisuke MATSUMURA ◽  
Osamu NAKAJIMA ◽  
Yuichi HASHIMOTO

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1544 ◽  
Author(s):  
Sylwia Flis ◽  
Ewelina Bratek ◽  
Tomasz Chojnacki ◽  
Marlena Piskorek ◽  
Tomasz Skorski

Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in the chronic phase (CML-CP). However, it is unlikely that they can completely “cure” the disease. This might be because some subpopulations of CML-CP cells such as stem and progenitor cells are resistant to chemotherapy, even to the new generation of TKIs. Therefore, it is important to look for new methods of treatment to improve therapeutic outcomes. Previously, we have shown that class I p21-activated serine/threonine kinases (PAKs) remained active in TKI-naive and TKI-treated CML-CP leukemia stem and early progenitor cells. In this study, we aimed to determine if simultaneous inhibition of BCR-ABL1 oncogenic tyrosine kinase and PAK1/2 serine/threonine kinase exert better anti-CML effect than that of individual treatments. PAK1 was inhibited by small-molecule inhibitor IPA-3 (p21-activated kinase inhibitor III), PAK2 was downregulated by specific short hairpin RNA (shRNA), and BCR-ABL1 tyrosine kinase was inhibited by imatinib (IM). The studies were conducted by using (i) primary CML-CP stem/early progenitor cells and normal hematopoietic counterparts isolated from the bone marrow of newly diagnosed patients with CML-CP and from healthy donors, respectively, (ii) CML-blast phase cell lines (K562 and KCL-22), and (iii) from BCR-ABL1-transformed 32Dcl3 cell line. Herein, we show that inhibition of the activity of PAK1 and/or PAK2 enhanced the effect of IM against CML cells without affecting the normal cells. We observed that the combined use of IM with IPA-3 increased the inhibition of growth and apoptosis of leukemia cells. To evaluate the type of interaction between the two drugs, we performed median effect analysis. According to our results, the type and strength of drug interaction depend on the concentration of the drugs tested. Generally, combination of IM with IPA-3 at the 50% of the cell kill level (EC50) generated synergistic effect. Based on our results, we hypothesize that IM, a BCR-ABL1 tyrosine kinase inhibitor, combined with a PAK1/2 inhibitor facilitates eradication of CML-CP cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5004-5004
Author(s):  
Yuliya Linhares ◽  
Jade Dardine ◽  
Siavash Kurdistani

Abstract Abstract 5004 Introduction: Amiloride is an FDA approved potassium-sparing diuretic which targets Na+/H+ exchanger isoform 1 (NHE1). NHE1 is responsible for the regulation of the intracellular pH, as well as cell-cycle and apoptosis. In supra-pharmacologic concentrations, amiloride non-specifically inhibits protein kinases. Recent study demonstrated that proapoptotic effect of amiloride in CML cell lines is linked to the modulation of the alternative splicing of Bcl-x, HIPK3, and BCR/ABL genes and is independent of pHi. Here, we demonstrate that pharmacologic doses of amiloride preferentially induce growth inhibition, cell cycle arrest and apoptosis in Flt3-ITD positive acute myeloid leukemia cell lines as compared to Bcr-Abl positive leukemia cell line. Our data suggests that amiloride may have an effect on Flt3 signaling and that its treatment potential for Flt3-ITD positive acute myeloid leukemia needs to be explored. Methods: MV4-11, MOLM13 and K562 cells lines in log-phase growth were used for the experiments. Analysis of the baseline Flt3 expression and phosphorylation status was assessed via Flt3 immunoprecipitation and Western blotting for Flt3 and phosphotyrosine. Cells were incubated with various amiloride concentrations; equal volume dilutions of DMSO were used for control. Cell counting and trypan blue exclusion viability was performed on TC10 Bio-Rad automated cell counter. The cell cycle analysis was performed applying propidium iodide staining. To assess for apoptosis and cell death, we used annexin V/PI staining kit and flow cytometry. Results: MOLM13 and MV4-11 cell lines carry activating Flt3-ITD mutation. We confirmed the expression and constituative activation of Flt3 in MOLM13 and MV4-11 cells with Western blotting. Flt3 protein was not detectable in K562 cell line. Amiloride at 0.025 mM and 0.05 mM completely inhibited the growth of MV4-11 cells after 24 hrs of treatment with no significant increase in total or live cell numbers at 72 hrs, but only mildly affected K562 cell proliferation. While the above amiloride concentrations caused cell death in MV4-11 and MOLM13 cell lines, there was no increased cell death in K562 cells. Incubation of MOLM13 and MV4-11 cell lines with 0.05 mM amiloride for 20 hrs induced cell cycle arrest. In MV4-11 cell line, the proportion of S phase cells after amiloride treatment was 15.4% (SD=5.4%) as compared to 31.3% (SD=1.4%) in control. MOLM13 cell line demonstrated 15.3% (SD=4.7%) of cells in S after amiloride treatment as compared to 35.3% (SD=2.4%) cells in S phase in control treatment. In K562 cell line, there was less effect with 52% (SD=4.2%) of cells in S phase in control as compared to 37% (SD=8.9%) in amiloride treatment. MV4-11 and MOLM 13 cell lines were more sensitive than K562 cells to amiloride induced apoptosis with 28.8% (control 12.7%) of MV4-11 cells, 11.4% (control 7.4%) of MOLM13 cells, and 11.4% (control 8.6%) of K562 cells being apoptotic after 20 hr treatment with 0.05mM amiloride. At 72 hrs of amiloride treatment 34% (control 1.5%) of MV4-11 cells, 17% (control 5%) of MOLM13 cells and 11% of K562 cells (control 8.9%) were apoptotic. Amiloride had similar effect on the number of dead cells with no increase in total cell death in K562 cell line. Upon treatment with increasing amiloride concentrations, there was dose-dependent increase in cell death and apoptosis in all three cell lines with K562 line showing relative resistance to amiloride. Discussion: Our results demonstrate that amiloride induces cell cycle arrest and inhibits proliferation of Flt3-ITD positive cell lines MV4-11 and MOLM13 as well as K562 cell line at a pharmacologic concentration of 0.05 mM. Both, cell cycle arrest and antiproliferative effect are more pronounced in Flt3-ITD positive cells lines while it is mild in Bcr-Abl positive K562 cell line. Pharmacologic doses of amiloride induce cell death and apoptosis in Flt3-ITD positive cell lines but not in K562 cell line. Both, Bcr-Abl and Flt3 signaling stimulates proliferation and inhibits apoptosis in myeloid leukemia cells. Our study suggests that amiloride may induce cell cycle arrest and apoptosis via modulating Flt3 signaling cascade. We are currently investigating the effects of amiloride on Flt3 phosphorylation. In conclusion, our data suggests that amiloride presents a potential treatment option for Flt3-ITD positive acute myeloid leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document