A Novel Sliding Mode Guidance Law with Impact Angle and Time Constraints

Author(s):  
Xiaojun Tan
Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


2021 ◽  
pp. 5559-5570
Author(s):  
Liang Yong ◽  
Zhang You’an ◽  
Yan Shi

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Tianning Wang ◽  
Shengjing Tang ◽  
Jie Guo ◽  
Haoqiang Zhang

The implementation of advanced guidance laws with bearings-only measurements requires estimation of the range information. To improve estimation accuracy and satisfy the impact angle constraint, this paper proposes a two-phase optimal guidance law consisting of an observing phase and an attacking phase. In the observing phase, the determinant of Fisher information matrix is maximized to achieve the optimal observability and a suboptimal solution expressed by leading angle is derived analytically. Then, a terminal sliding-mode guidance law is designed to track the desired leading angle. In the followed attacking phase, an optimal guidance law is integrated with a switching term to satisfy both the impact angle constraint and the field-of-view constraint. Finally, comparison studies of the proposed guidance law and a traditional optimal guidance law are conducted on stationary targets and maneuvering targets cases. Simulation results demonstrate that the proposed guidance law is able to improve the range observability and achieve better terminal performances including impact angle accuracy and miss distance.


Author(s):  
Peng Li ◽  
Qi Liu ◽  
Chen-Yu He ◽  
Xiao-Qing Liu

This paper investigates the three-dimensional guidance with the impact angle constraint, actuator faults and input constraint. Firstly, an adaptive three-dimensional guidance law with impact angle constraint is designed by using the terminal sliding mode control and nonhomogeneous disturbance observer. Then, in order to solve the problem of the input saturation and actuator faults, an adaptive anti-saturation fault-tolerant three-dimensional law is proposed by using the hyperbolic tangent function based on the passive fault-tolerant control. Finally, the effectiveness of the designed guidance laws is verified by using the Lyapunov function and simulation.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhe Yang ◽  
Hui Wang ◽  
Defu Lin ◽  
Luyao Zang

A guidance problem for impact time and angle control applicable to cooperative attack is considered based on the sliding mode control. In order to satisfy the impact angle constraint, a line-of-sight rate polynomial function is introduced with four tuning parameters. And the time-to-go derivative with respect to a downrange orientation is derived to minimize the impact time error. Then the sliding mode control surface with impact time and angle constraints is constructed using nonlinear engagement dynamics to provide an accurate solution. The proposed guidance law is easily extended to a nonmaneuvering target using the predicted interception point. Numerical simulations are performed to verify the effectiveness of the proposed guidance law for different engagement scenarios.


Sign in / Sign up

Export Citation Format

Share Document