Programmable voltage mode multifunctional filter using modified CMOS current controlled current conveyor transconductance amplifier

Author(s):  
Neha Gupta ◽  
P. P. Bansod
2016 ◽  
Vol 25 (05) ◽  
pp. 1650034 ◽  
Author(s):  
Punnavich Phatsornsiri ◽  
Montree Kumngern ◽  
Panit Lamun

This paper presents a new voltage-mode (VM) universal biquadratic filter using differential difference current conveyor transconductance amplifier (DDCCTA) as an active element. The circuit employs one DDCCTA, two floating resistors and two floating capacitors which can realize five biquadratic filters, namely low-pass (LP), band-pass (BP), band-stop (BS), high-pass (HP) and all-pass (AP) into one single topology. For realizing these filtering functions, passive component-matching conditions, inverting-type and/or doubling-input signal requirements and changing circuit configuration are absent. The natural angular frequency and quality factor of the filter can be orthogonally controlled deliberately. The VM biquadratic filter using grounded passive components with high-input and low-output impedances can be obtained by adding an additional DDCCTA or differential difference current conveyor (DDCC). The simulation results with 0.5[Formula: see text][Formula: see text]m CMOS process from MIETEC are given to confirm the theoretical predictions and the experimental results are also included to verify the workability of the proposed structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jiun-Wei Horng ◽  
Zih-Yang Jhao

A voltage-mode universal biquadratic filter using a differential voltage current conveyor (DVCC), two capacitors, and two resistors is presented. The proposed circuit has four input terminals and three output terminals and can realize all the standard filter functions, which are lowpass, bandpass, highpass, notch, and allpass filters, without changing the circuit topology. Three simultaneous output filter responses can be obtained from some derived filter types. The proposed circuit employs only one DVCC that simplifies the configuration.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Bhartendu Chaturvedi

This paper presents some additional high input low output impedance analog networks realized using a recently introduced single Dual-X Current Conveyor with buffered output. The new circuits encompass several all-pass sections of first- and second-order. The voltage-mode proposals benefit from high input impedance and low output impedance. Nonideality and sensitivity analysis is also performed. The circuit performances are depicted through PSPICE simulations, which show good agreement with theory.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850150 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents first-order voltage-mode filters using a single current conveyor with an additional X-stage, and passive elements. The new circuits have multifunction capability, and also realize low-shelf, high-shelf and band-shelf functions. The study is carried out on the effects of non-idealities, parasitic elements, and loading on the performance of proposed circuits. Active and passive sensitivities are also analyzed. The active element, extra-X current conveyor used for designing new circuits is simpler than most of the one active element and two passive elements’ based circuits. Detailed comparisons are carried out with relevant available works, and the new circuits are found to be more compact and exhibit higher frequency performances. The simulation results using 0.25[Formula: see text][Formula: see text]m CMOS parameters with [Formula: see text]1.25[Formula: see text]V power-supply are shown to verify the proposed circuits. The proposed circuits are also verified through simulations. Experimental support is given using AD-844 ICs to strengthen the validity of the proposed circuits.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Neeta Pandey ◽  
Praveen Kumar ◽  
Jaya Choudhary

This paper proposes current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA), a new active building block for analog signal processing. The functionality of the proposed block is verified via SPICE simulations using 0.25 μm TSMC CMOS technology parameters. The usefulness of the proposed element is demonstrated through an application, namely, wave filter. The CCDDCCTA-based wave equivalents are developed which use grounded capacitors and do not employ any resistors. The flexibility of terminal characteristics is utilized to suggest an alternate wave equivalents realization scheme which results in compact realization of wave filter. The feasibility of CCDDCCTA-based wave active filter is confirmed through simulation of a third-order Butterworth filter. The filter cutoff frequency can be tuned electronically via bias current.


Sign in / Sign up

Export Citation Format

Share Document