Adaptively disturbance attenuation design of robustly stable control system

Author(s):  
P. Mulyono ◽  
H. Ohmori ◽  
A. Sano
2020 ◽  
Vol 8 (1) ◽  
pp. 08-15 ◽  
Author(s):  
Sergey Mikhailovich Afonin

We obtained the condition absolute stability on the derivative for the control system of electromagnetoelastic actuator for communication equipment. We applied the frequency methods for Lyapunov stable control system to calculate the condition absolute stability control system of electromagnetoelastic actuator. We used Yakubovich criterion absolute stability system with the condition on the derivative. The aim of this work is to determine the condition of the absolute stability on the derivative for the control system of electromagnetoelastic actuator. We received the stationary set of the control system of the hysteresis deformation of the electromagnetoelastic actuator. The stationary set is the segment of the straight line.


Author(s):  
Jun Zhao ◽  
Hugang Han ◽  
◽  

Although the Takagi–Sugeno fuzzy model is effective for representing the dynamics of a plant to be controlled, two main questions arise when using it just as other models: 1) how to deal with the gap, which is referred to as uncertainty in this study, between the model and the concerned plant, and how to estimate the state information when it cannot be obtained directly, especially with the existence of uncertainty; 2) how to design a controller that guarantees a stable control system where only the estimated state is available and an uncertainty exists. While the existing studies cannot effectively observe the state and the resulting control systems can only be managed to be uniformly stable, this study first presents a state observer capable of precisely estimating the state regardless of the existence of uncertainty. Then, based on the state observer, an uncertainty observer is derived, which can track the trajectory of uncertainty whenever it occurs in a real system. Finally, a controller based on both observers is presented, which guarantees the asymptotic stability of the resulting control system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayaz Ahmed Hoshu ◽  
Liuping Wang ◽  
Alex Fisher ◽  
Abdul Sattar

PurposeDespite of the numerous characteristics of the multirotor unmanned aircraft systems (UASs), they have been termed as less energy-efficient compared to fixed-wing and helicopter counterparts. The purpose of this paper is to explore a more efficient multirotor configuration and to provide the robust and stable control system for it.Design/methodology/approachA heterogeneous multirotor configuration is explored in this paper, which employs a large rotor at the centre to provide majority of lift and three small tilted booms rotors to provide the control. Design provides the combined characteristics of both quadcopters and helicopters in a single UAS configuration, providing endurance of helicopters keeping the manoeuvrability, simplicity and control of quadcopters. In this paper, rotational as well as translational dynamics of the multirotor are explored. Cascade control system is designed to provide an effective solution to control the attitude, altitude and position of the rotorcraft.FindingsOne of the challenging tasks towards successful flight of such a configuration is to design a stable and robust control system as it is an underactuated system possessing complex non-linearities and coupled dynamics. Cascaded proportional integral (PI) control approach has provided an efficient solution with stable control performance. A novel motor control loop is implemented to ensure enhanced disturbance rejection, which is also validated through Dryden turbulence model and 1-cosine gust model.Originality/valueRobustness and stability of the proposed control structure for such a dynamically complex UAS configuration is demonstrated with stable attitude and position performance, reference tracking and enhanced disturbance rejection.


2010 ◽  
Vol 36 ◽  
pp. 243-252 ◽  
Author(s):  
Yoshinori Ando ◽  
Tatsuya Sakanushi ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Takaaki Hagiwara ◽  
...  

The multi-period repetitive (MPR) control system is a type of servomechanism for periodic reference inputs. Using MPR controllers, transfer functions from the reference input to the output and from the disturbance to the output of the MPR control system have infinite numbers of poles. To specify the input-output characteristic and the disturbance attenuation characteristic easily, Yamada and Takenaga proposed MPR control systems, named simple multi-period repetitive (simple MPR) control systems, where these transfer functions have finite numbers of poles. In addition, Yamada and Takenaga clarified the parameterization of all stabilizing simple MPR controllers. However, using the simple MPR repetitive controller by Yamada and Takenaga, we cannot specify the input-output characteristic and the disturbance attenuation characteristic separately. From the practical point of view, it is desirable to specify the input-output characteristic and the disturbance attenuation characteristic separately. The purpose of this paper is to propose the parameterization of all stabilizing two-degree-of-freedom (TDOF) simple MPR controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lan Zhou ◽  
Jinhua She ◽  
Shaowu Zhou ◽  
Qiwei Chen

This paper presents a method of designing a state-observer based modified repetitive-control system that provides a given H∞ level of disturbance attenuation for a class of strictly proper linear plants. Since the time delay in a repetitive controller can be treated as a kind of disturbance, we convert the system design problem into a standard state-feedback H∞ control problem for a linear time-invariant system. The Lyapunov functional and the singular-value decomposition of the output matrix are used to derive a linear-matrix-inequality (LMI) based design algorithm for the parameters of the feedback controller and the state-observer. A numerical example demonstrates the validity of the method.


Author(s):  
Sergey M Afonin

The stationary set of the control system of the hysteresis deformation of the electro magneto elastic actuator is the segment of the straight line. The aim of this work is to determine the condition of the absolute stability on the derivative for control system of the deformation of the electro magneto elastic actuator in automatic nanomanipulators for Nano science and Nano biomedicine research. The frequency methods for Lyapunov stable control system are used to calculate the condition the absolute stability of the control system with electro magneto elastic actuator. In result we obtained the condition of the absolute stability on the derivative for the control system with the electro magneto elastic actuator in automatic nanomanipulators for Nano science and Nano biomedicine research.


Sign in / Sign up

Export Citation Format

Share Document