A Linear Matrix Inequality Based Attack Detection Approach for Networked Control Systems

Author(s):  
Haifeng Niu ◽  
Chandreyee Bhowmick ◽  
S. Jagannathan
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jinna Li ◽  
Lifeng Wei ◽  
Chao Liu ◽  
Haibin Yu

Compensation scheme-basedH∞control is investigated for networked control systems with packet disordering and packet loss. Since the existence of packet disordering and packet loss inevitably degrades the control performance of networked control systems, it is worth studying a control scheme to compensate for them, such that the control performance can be improved. Thus, a compensation control strategy is first proposed following this direction. Next, a mathematical model of networked control systems with Markovian property is constructed due to the signals executed by the plant subject to Markovian chain. Based on it, a sufficient condition for stochastic stability of networked control systems with uncertain parameters as well as compensation strategy is presented, and an adaptive controller is designed based on linear matrix inequality (LMI) technique. Finally, a numerical example and simulations are given to illustrate the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.


2013 ◽  
Vol 321-324 ◽  
pp. 1858-1862 ◽  
Author(s):  
Li Sheng Wei ◽  
Zhi Hui Mei ◽  
Ming Jiang

This study focus on α-Stability constraints for uncertain networked control systems (NCSs) subject to disturbance inputs, where the network transmission is connected with time-delay and packet dropout. The overall NCSs model is derived. In order to obtain much less conservative results, the sufficient condition for feasibility is presented in term of 2nd Lyapunov stability theory and a set of linear matrix inequalities (LMIs). This LMI approach can be the optimization problem of computation of the maximal allowed bound on the time-delay for NCSs.


Author(s):  
Liruo Zhang ◽  
Sing Kiong Nguang ◽  
Shen Yan

This paper investigates the event-triggered H∞ control for networked control systems under the denial-of-service (DoS) attacks. First, a novel system model is established considering random, time-constraint DoS attacks. Second, an event-triggered scheme including an off-time is proposed to reduce the unnecessary occupation of network resources, with which a prescribed minimum inter-triggering time is guaranteed and Zeno problem is avoided. Third, sufficient conditions for the existence of an event-triggered controller which ensures the exponential stability of the closed-loop system with desired H∞ performance are formulated in linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed method is examined by two illustrative examples, where a real communication network based on the ZigBee protocol is utilized.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 27 ◽  
Author(s):  
Hao Wang ◽  
Shousheng Xie ◽  
Bin Zhou ◽  
Weixuan Wang

The fault-tolerant robust non-fragile H∞ filtering problem for networked control systems with sensor failures is studied in this paper. The Takagi-Sugeno fuzzy model which can appropriate any nonlinear systems is employed. Based on the model, a filter which can maintain stability and H∞ performance level under the influence of gain perturbation of the filter and sensor failures is designed. Moreover, the gain matrix of sensor failures is converted into a dynamic interval to expand the range of allowed failures. And the sufficient condition for the existence of the desired filter is derived in terms of linear matrix inequalities (LMIs) solutions. Finally a simulation example is given to illustrate the effectiveness of the proposed method.


2010 ◽  
Vol 44-47 ◽  
pp. 1867-1671
Author(s):  
Zhi Hong Huo ◽  
Yuan Zheng ◽  
Chang Xu

Networked control systems with network-induced delay, packet loss and parameters uncertainty is modeled in this paper, consider the sensors that can’t send information to controller and the actuators that can’t receive information calculated and sent by the controller, the integrity design of the networked control system with sensors failures and actuators failures is analyzed based on robust fault-tolerant control theory. Parametric expression of controller is given based on feasible solution of linear matrix inequality. After detailed theoretical analysis, the simulation results is provided, which further demonstrated the proposed scheme.


2012 ◽  
Vol 629 ◽  
pp. 835-839
Author(s):  
Ye Guo Sun

In this paper, the stability and stabilization problems of a class of networked control systems (NCSs) with bounded packet dropout are investigated. An iterative approach is proposed to model NCSs with bounded packet dropout as Markovian jump linear systems (MJLSs). The transition probabilities of MJLSs are partly unknown due to the complexity of network. The system under consideration is more general, which covers the systems with completely known and completely unknown transition probabilities as two special cases. Moreover, both sensor-to-controller and controller-to-actuator packet dropouts are considered simultaneously. The sufficient conditions for stochastic stability and stabilization of the underlying systems are derived via linear matrix inequalities (LMIs) formulation. Lastly, an illustrative example is given to demonstrate the effectiveness of the proposed results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qixin Zhu ◽  
Kaihong Lu ◽  
Yonghong Zhu

Scheduling policy based on model prediction error is presented to reduce energy consumption and network conflicts at the actuator node, where the characters of networked control systems are considered, such as limited network bandwidth, limited node energy, and high collision probability. The object model is introduced to predict the state of system at the sensor node. And scheduling threshold is set at the controller node. Control signal is transmitted only if the absolute value of prediction error is larger than the threshold value. Furthermore, the model of networked control systems under scheduling policy based on predicted error is established by taking uncertain parameters and long time delay into consideration. The design method ofH∞guaranteed cost controller is presented by using the theory of Lyapunov and linear matrix inequality (LMI). Finally, simulations are included to demonstrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document