A flexible interface between two-dimensional representation and three-dimensional representation

Author(s):  
H.-Y. Chou ◽  
M.J. Wozny
1998 ◽  
Vol 55 (spe) ◽  
pp. 39-45 ◽  
Author(s):  
Y. Sako ◽  
K. Fujimura ◽  
M.B. McDonald ◽  
D. James

Seed analysts need to identify seeds, and seed catalogs are used as a reference to accomplish this task. Conventional seed catalogs supply two-dimensional photographs and hand-drawn diagrams. In this study, a new, three-dimensional representation of seeds is developed to supplement these traditional photographs and drawings. QuickTime VR is a promising method for viewing three-dimensional objects on a computer screen. It permits manipulation of an object by rotating and viewing it from any pre-specified angle at an interactive speed, allowing the viewer the sense of examining a hand-held object. In this study, QuickTime VR object movies of seeds were created as interactive "movies" of seeds that can be rotated and scaled to give the viewer the sensation of examining actual seeds. This approach allows the examination of virtual seeds from any angle, permitting more accurate identification of seeds by seed analysts.


Author(s):  
Barbara E. Barich

This chapter discusses the collection of objects, in clay and stone, from various pastoral Saharan sites whose original core area lay between Libya (Tadrart Acacus) and Algeria (Tassili- n-Ajjer). The chapter starts from the general theme of the relationship between the figurines and the subjects they represent, and the difference between two-dimensional and three-dimensional representation. It goes on to discuss the manufacturing process of the clay specimens (dating from between 7000 and 4000 years ago) and the significance of the changes introduced by the Neolithic. Most of the items studied fall into the category of zoomorphic figurines, with only two anthropomorphic examples, and find in the depiction of cattle their most striking subject. These representations possess an evident symbolic content which must be framed within the pastoral ideology of the Saharan Neolithic. In the anthropomorphic figurines the representation of the human body also plays the role of recapturing the sense of wholeness.


2008 ◽  
Vol 5 (1) ◽  
pp. 77-93 ◽  
Author(s):  
David C.Y. Fung ◽  
Seok-Hee Hong ◽  
Dirk Koschützki ◽  
Falk Schreiber ◽  
Kai Xu

Abstract Biological data is often structured in the form of complex interconnected networks such as protein interaction and metabolic networks. In this paper, we investigate a new problem of visualising such overlapping biological networks. Two networks overlap if they share some nodes and edges. We present an approach for constructing visualisations of two overlapping networks, based on a restricted three dimensional representation. More specifically, we use three parallel two dimensional planes placed in three dimensions to represent overlapping networks: one for each network (the top and the bottom planes) and one for the overlapping part (in the middle plane).Our method aims to achieve both drawing aesthetics (or conventions) for each individual network, and highlighting the intersection part by them. Using three biological datasets, we evaluate our visualisation design with the aim to test whether overlapping networks can support the visual analysis of heterogeneous and yet interconnected networks.


1991 ◽  
Vol 01 (03) ◽  
pp. 641-655 ◽  
Author(s):  
C. MIRA ◽  
J. P. CARCASSÈS

Let T be a one-dimensional or two-dimensional map. The three considered areas are related to three different configurations of fold and flip bifurcation curves, centred at a cusp point of a fold curve in the T parameter plane (b, c). The two transitions studied here occur via a codimension-three bifurcation defined in each case, when varying a third parameter a. The transition "mechanism," from an area type to another one, is given with a three-dimensional representation describing the sheet configuration of the parameter plane.


2013 ◽  
Vol 36 (5) ◽  
pp. 547-548
Author(s):  
Claus-Christian Carbon ◽  
Vera M. Hesslinger

AbstractJeffery et al. extensively and thoroughly describe how different species navigate through a three-dimensional environment. Undeniably, the world offers numerous three-dimensional opportunities. However, we argue that for most navigation tasks a two-dimensional representation is nevertheless sufficient, as physical conditions and limitations such as gravity, thermoclines, or layers of earth encountered in a specific situation provide the very elevation data the navigating individual needs.


Author(s):  
Sterling P. Newberry

The beautiful three dimensional representation of small object surfaces by the SEM leads one to search for ways to open up the sample and look inside. Could this be the answer to a better microscopy for gross biological 3-D structure? We know from X-Ray microscope images that Freeze Drying and Critical Point Drying give promise of adequately preserving gross structure. Can we slice such preparations open for SEM inspection? In general these preparations crush more readily than they slice. Russell and Dagihlian got around the problem by “deembedding” a section before imaging. This some what defeats the advantages of direct dry preparation, thus we are reluctant to accept it as the final solution to our problem. Alternatively, consider fig 1 wherein a freeze dried onion root has a window cut in its surface by a micromanipulator during observation in the SEM.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


Sign in / Sign up

Export Citation Format

Share Document