Unconstrained Minimax Design of Cascade-Form Allpass Phase System

Author(s):  
Tian-Bo Deng
Keyword(s):  
1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


2020 ◽  
Vol 16 (7) ◽  
pp. 848-859
Author(s):  
Dominik Mieszkowski ◽  
Marcin Koba ◽  
Michał P. Marszałł

Background: Reversed-phase liquid chromatography may cause difficulties, especially in the case of basic drugs due to the strong silanophilic interactions in the partition mechanism. Recently, imidazolium-based ionic liquids additives appeared interesting and a convenient solution for suppressing the harmful effect of free residuals of silanol groups, allowing remodeling of the stationary/mobile-phase system, and thus improving the lipophilicity assessment process. Objective: The aim of the study was to evaluate the retention behavior of basic antipsychotics using various RP-LC systems, and compare them with data obtained from the modified ionic-liquids RP-TLC systems, and perform the QSRR analysis. Methods: Retention and lipophilicity parameters of diverse antipsychotics have been examined in various RP-LC systems. Lipophilicity indices were compared with miscellaneous computed logP values. Furthermore, a large number of molecular descriptors have been computed and compared using various medicinal chemistry software, in order to contribute to the analysis of QSRR. Results: Designated correlation coefficients showed that lipophilicity parameters from TLC systems without [EMIM][BF4] additive correlates very poor with the calculated logPs indices, whereas the indices from the traditional HPLC and TLC systems (with [EMIM][BF4]) were clearly better. Furthermore, QSRR analysis performed for these experimentally obtained lipophilicity parameters showed significant relationships between the retention constants (RO>M, logkw) and the in silico calculated physicochemical molecular descriptors. Conclusion: ILs additive may be a significant factor affecting the lipophilicity of basic compounds, thus their use may be favorable in lipophilicity assessment studies. QSRR models with ILs showed that they may be useful in searching/or predicting HPLC/TLC retention parameters for the new/other antipsychotic drugs.


1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


Author(s):  
Qiaoshu Chen ◽  
Yanwen Zhang ◽  
Hui Chen ◽  
Jianbo Liu ◽  
Juewen Liu

2021 ◽  
Author(s):  
Filipe Smith Buarque ◽  
Cleide Mara Faria Soares ◽  
Ranyere Lucena de Souza ◽  
Matheus Mendonça Pereira ◽  
Álvaro Silva Lima

Two-phase water-free systems containing high ethanol content in the coexisting phases can selectively partition hydrophobic molecules from natural biomass.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1753
Author(s):  
Patrick Wittek ◽  
Felix Ellwanger ◽  
Heike P. Karbstein ◽  
M. Azad Emin

Plant-based meat analogues that mimic the characteristic structure and texture of meat are becoming increasingly popular. They can be produced by means of high moisture extrusion (HME), in which protein-rich raw materials are subjected to thermomechanical stresses in the extruder at high water content (>40%) and then forced through a cooling die. The cooling die, or generally the die section, is known to have a large influence on the products’ anisotropic structures, which are determined by the morphology of the underlying multi-phase system. However, the morphology development in the process and its relationship with the flow characteristics are not yet well understood and, therefore, investigated in this work. The results show that the underlying multi-phase system is already present in the screw section of the extruder. The morphology development mainly takes place in the tapered transition zone and the non-cooled zone, while the cooled zone only has a minor influence. The cross-sectional contraction and the cooling generate elongational flows and tensile stresses in the die section, whereas the highest tensile stresses are generated in the transition zone and are assumed to be the main factor for structure formation. Cooling also has an influence on the velocity gradients and, therefore, the shear stresses; the highest shear stresses are generated towards the die exit. The results further show that morphology development in the die section is mainly governed by deformation and orientation, while the breakup of phases appears to play a minor role. The size of the dispersed phase, i.e., size of individual particles, is presumably determined in the screw section and then stays the same over the die length. Overall, this study reveals that morphology development and flow characteristics need to be understood and controlled for a successful product design in HME, which, in turn, could be achieved by a targeted design of the extruders die section.


Sign in / Sign up

Export Citation Format

Share Document