System power consumption minimization for multichannel communications using cognitive radio

Author(s):  
An He ◽  
Srikathyayani Srikanteswara ◽  
Kyung Kyoon Bae ◽  
Timothy R. Newman ◽  
Jeffrey H. Reed ◽  
...  
Author(s):  
Л.О. МЫРОВА ◽  
А.В. ШЕВЫРЕВ ◽  
С.А. МУСАЕЛЯН ◽  
И.С. ПОПОВ ◽  
В.А. ВОРОЩАК

Рассмотрены новые прорывные технические решения по тропосферной связи на основе когнитивных радиостанций с фазированной антенной решеткой (ФАР). Показана возможность повышения (в десятки раз)аппаратурной надежности за счет исключения из состава ТРС мощных передатчиков и применения вместо них маломощных антенных приемопередающих модулей (АППМ),синфазноработающих в составе ФАР. Представлены преимуществами ТРС: возможность длительной работа без технического обслуживания, снижение вдвое энергопотребления, а также глубокая унификация построения ТРС разного класса на основе унифицированных АППМ. New breakthrough technical solutions for tropospheric communication based on cognitive radio stations with a phased antenna array (PAA) are considered. These solutions provide the possibility of increasing the hardware reliability tenfold due to exclusion of powerful transmitters from tropospheric stations (TS) and using instead of them low-power antenna receive-transmitting modules (ARTM), operating in phase as part of the PAA. The advantages of such TSs are shown that enable long-term operation without maintenance, halving power consumption, as well as deep unification of the construction of TSs of different classes based on unified ARTMs.


Author(s):  
Xun Zhang ◽  
Pierre Leray ◽  
Jacques Palicot

Heat emission and temperature control in an electronic device are highly correlated with power consumption as well as to equipment’s reliability. Within this context, this chapter discusses a possible solution to restrict the processing component’s heat emission in FPGA-based systems (e.g., Cognitive Radio [CR] equipment). It also describes the implementation, on reconfigurable FPGA based circuit, of a digital thermal sensor, analyzes the applicability of local heat estimations, and empirically describes the temperature-power consumption relationship in a dynamically reconfigurable FPGA platform. Finally, discussions are conducted on the decision making issues related to the use of such sensors to enable “hot-spot” migration in CR equipment.


2019 ◽  
Vol 63 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Subhashree Mishra ◽  
Santwana Sagnika ◽  
Sudhansu Sekhar Singh ◽  
Bhabani Shankar Prasad Mishra

Cognitive radio systems have taken a fore-running position in the wireless communication technology. With most of the communication taking place through multi-carrier systems, the allocation of available spectrum to various carriers is a prominent issue. Since cognitive systems provide an environment of dynamic spectrum allocation, it becomes necessary to perform dynamic spectrum allocation swiftly with due consideration of parameters, like power consumption, fair distribution and minimal error. This paper considers a Particle Swarm Optimization-based approach, popularly used for solving large problems involving complex solution spaces to reach an optimal solution within feasible time. The mentioned spectrum allocation problem has been solved using PSO with a view to maximize the total transfer rate of the system, within specified constraints of maximum error rate, maximum power consumption and minimum transfer rate per user. The results have been compared with the existing Genetic Algorithm-based approach and have proved to be more effective.


2013 ◽  
Vol 760-762 ◽  
pp. 1343-1347
Author(s):  
Tao Wan

Power electronic transformation system is applied widely in industrial control and the application environment is complex. Big, small and medium-sized system power consumption improves continuously, so it is urgent to reduce the system energy consumption problems. This paper proposes a way to reduce the energy consumption of power electronic transformation system based on genetic algorithm. Work frequency regulation and working voltage measurement technology are used in industrial control system and the voltage and frequency produced by system power consumption are calculated. Genetic algorithm is used to calculate the optimal solution. And then achieve the purpose of reducing energy consumption. Experimental results show that this control algorithm can effectively reduce the power consumption of power electronic transformation system in industrial control and has a good effect.


2012 ◽  
Vol 531-532 ◽  
pp. 584-587
Author(s):  
Juan Juan Yang ◽  
Ke Li ◽  
Xin Yang Cui

A prototype of miniature cooling system was developed, which mainly consists of the miniature compressor from DONG YUAN and a spiral-tube evaporator designed by ourselves. The performances of the prototype with different parameters were tested. The influence of ambient temperature, chilled water temperature on the performance of the cooling system were analyzed. The best operating conditions and the optimum amount of refrigerant were obtained. Conclusions were gotten as follows:1) With environment temperature rising, compression ratio increases, system power consumption increases and refrigerating capacity COP decreases. 2) With chilled water temperature rising, compression ratio and power consumption decrease, refrigerating capacity increases, and COP increases rapidly.3) Paper gets system performance: refrigerating capacity is 63 W, compressor power consumption is 24.5 W, COP value is 2.57. in operation condition: refrigerant amount is 40g, environment temperature is 30°C, chilled water temperature is 40 °C, chilled water mass flow is 45 kg/h.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nandini Vitee ◽  
Harikrishnan Ramiah ◽  
Wei-Keat Chong ◽  
Gim-Heng Tan ◽  
Jeevan Kanesan ◽  
...  

A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are −13.6 dBm and −4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.


Sign in / Sign up

Export Citation Format

Share Document