scholarly journals A very simple analog control for QSW-ZVS source/sink buck converter with seamless mode transition

Author(s):  
Kevin Martin ◽  
Aitor Vazquez ◽  
Manuel Arias ◽  
Javier Sebastian
2016 ◽  
Vol 14 ◽  
pp. 85-90 ◽  
Author(s):  
Samuel Quenzer-Hohmuth ◽  
Thoralf Rosahl ◽  
Steffen Ritzmann ◽  
Bernhard Wicht

Abstract. Switched-mode power supplies (SMPS) convert an input DC-voltage into a higher or lower output voltage. In automotive, analog control is mostly used in order to keep the required output voltages constant and resistant to disturbances. The design of robust analog control for SMPS faces parameter variations of integrated and external passive components. Using digital control, parameter variations can be eliminated and the required area for the integrated circuit can be reduced at the same time. Digital control design bears challenges like the prevention of limit cycle oscillations and controller-wind-up. This paper reviews how to prevent these effects. Digital control loops introduce new sources for dead times in the control loop, for example the latency of the analog-to-digital-converter (ADC). Dead times have negative influence on the stability of the control loop, because they lead to phase delays. Consequently, low latency is one of the key requirements for analog-to-digital-converters in digitally controlled SMPS. Exploiting the example of a 500 kHz-buck converter with a crossover frequency of 70 kHz, this paper shows that the 5 µs-latency of a ΔΣ-analog-to-digital-converter leads to a reduction in phase margin of 126°. The latency is less critical for boost converters because of their inherent lower crossover frequencies. Finally, the paper shows a comparison between analog and digital control of SMPS with regard to chip area and test costs.


2005 ◽  
Vol 14 (04) ◽  
pp. 653-666 ◽  
Author(s):  
S. PARUI ◽  
S. BANERJEE ◽  
S. SENGUPTA ◽  
B. BASAK

The bifurcation phenomena occurring in a current mode controlled buck converter when it shifts from continuous conduction mode (CCM) to discontinuous conduction mode (DCM) have been reported. A sampled data model has been developed considering CCM as well as DCM. The bifurcation phenomena observed in such converters have been verified experimentally.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350023 ◽  
Author(s):  
A. ELNADY

This paper presents an innovative driver circuit for a new current regulator of the multilevel inverters. The proposed regulator has a PI controller to guarantee the optimum tracking for the reference current. This proposed regulator has the advantage of integration between the PI controller and the multicarrier switching operation. This regulator fits the operation of multilevel and cascaded converters. The suggested current regulator is compared with several existing current regulators of the multilevel and cascaded converters. The performance of the proposed regulator is verified using simulation results in comparison with the performance of the common existing current regulators for the multilevel inverter. Moreover, this paper shows the performance of the new regulator in power system applications.


2020 ◽  
Vol 35 (3) ◽  
pp. 3195-3207
Author(s):  
Aitor Vazquez ◽  
Kevin Martin ◽  
Manuel Arias ◽  
Javier Sebastian
Keyword(s):  

Author(s):  
Ruchi Rashmi ◽  
Shweta Jagtap

Purpose Traditionally, industrial power supplies have been exclusively controlled through analog control to sustain high reliability with low cost. However, with the perpetual decrement in cost of digital controllers, the feasibility of a digitally controlled switch mode power supply has elevated significantly. This paper aims to outline the challenges related to the design of digital proportional-integral (PI) controlled synchronous rectifier (SR) buck converter by comparing controller performance in continuous and discrete time. The trapezoidal approximation-based digital PI control is designed for low voltage and high-frequency SR buck converter operating under continuous conduction mode. Design/methodology/approach The analog and digital controller are designed using a SISO tool of MATLAB. Here, zero-order hold transform is used to convert the transfer function from continuous to discrete time. Frequency and time domain analysis of continuous plant, discrete plant and close loop system is performed. The designed digital PI control is simulated in MATLAB Simulink. The simulated results is also verified on hardware designed around digital signal processing control. Findings The continuous and discrete control loops are validated with multiple tests in the time and frequency domain. The detailed steady state theoretical analysis and performance of the SR buck converter is presented and verified by simulation. It is found that the delay in digital control loop results in a low phase margin. This phase margin decreases with higher bandwidth. The hardware experiments with the digital control loop are carried out on a 10 W prototype. The chosen parameters for the SR buck converter are found to be optimum for steady and transient state response. Originality/value This paper compares the digital and analog control approach of compensator design. It focuses on the implications created at the time of transforming the control design from continuous to discrete time. Further, it also focuses on the selection of parameters such as phase margin, bandwidth and low pass filter.


Author(s):  
Doshi Prarthana

The primary focus for the R&D in this area so far has been to figure out the best approach for evaluating and designing the DC-DC converter and perhaps the most appropriate control technique is being applied in different DC-DC converter circuits. Depending on power handling capacity as well as high-frequency switching, certain switching devices are chosen. This paper discusses the deployment of the digital PID controllers in the DC-DC converters. In an attempt to get a quicker response, voltage mode control has been used. Digital controllers started replacing traditional analog controllers more and more. Better immunity to changes in the environment which includes temperature and degradation of components, improved versatility by modifying the software, increasing advanced control methods, and decreased number of the components are the key benefits of the digital control against the analog control. A structured and concise strategy for designing a digitally operated close-loop Dc / Dc buck converter is discussed in this paper beginning with the Buck converter and giving the set of certain performance specification, implementations of the digital Proportional-IntegralDerivative(PID) controller is made. It addresses in depth all the appropriate DSP hardware and/or software methods and approaches needed to implement a controller. In order to illustrate the efficacy of the model, the dynamic response as well as the steady-state performance of controller is provided. The experimental outcomes fit well with the model of simulation. During the implementations of Switch Mode Power Supply (SMPS), application of dsPIC provides new perspectives towards affordable and versatile approaches of digital control.


Sign in / Sign up

Export Citation Format

Share Document