Improve small capacitance measurement sensitivity by opto-electronic isolation method

Author(s):  
Wei Wang ◽  
Lu Huang ◽  
Yan Yang ◽  
Dongxue Dai ◽  
Qian Sun ◽  
...  
2020 ◽  
Author(s):  
Mihai T. Lazarescu

Using capacitive sensors at long ranges (10-20x their plate diameter) for long term environmental sensing can be limited by slow but significant measurement drifts that can often far exceed the small capacitance variations of interest, which can be around 0.01% or less. We propose a differential capacitance measurement method that rejects the quasi-constant drift currents for single plate capacitive sensors by averaging the absolute slope values of adjacent charge-discharge voltage ramps of the plate capacitance, under constant current. Compared analytically and in simulations with period modulation techniques using astable multivibrators, our method shows much better rejection of drifts due to quasi-constant charge migration and improved random noise attenuation, while preserving the measurement sensitivity. We also provide an implementation example that avoids errors caused by some types of ramp distortions and improves noise reduction.<br>


2020 ◽  
Author(s):  
Mihai T. Lazarescu

Using capacitive sensors at long ranges (10-20x their plate diameter) for long term environmental sensing can be limited by slow but significant measurement drifts that can often far exceed the small capacitance variations of interest, which can be around 0.01% or less. We propose a differential capacitance measurement method that rejects the quasi-constant drift currents for single plate capacitive sensors by averaging the absolute slope values of adjacent charge-discharge voltage ramps of the plate capacitance, under constant current. Compared analytically and in simulations with period modulation techniques using astable multivibrators, our method shows much better rejection of drifts due to quasi-constant charge migration and improved random noise attenuation, while preserving the measurement sensitivity. We also provide an implementation example that avoids errors caused by some types of ramp distortions and improves noise reduction.<br>


Author(s):  
H. Dongmo ◽  
P. Hammond ◽  
J. Weaver

Abstract Scanning Capacitance Microscopy (SCM) is an Atomic Force Microscopy (AFM) based technique that simultaneously records topography and local capacitance with high spatial resolution. This tool is based on the high frequency MOS capacitor theory, and is routinely used in failure analysis to discern the 2D carrier profiles and/or defects in insulator layers of semiconductor devices. An ac voltage induces a dynamic change in capacitance formed by the SCM tip and oxidized semiconductor sample surface. Because of the small contact area, sensitivity of the capacitance measurements must be lower than 10-18 F in a 1 kHz bandwidth. SCM sensors capable of such sensitivity are commonly based on the Radio Corporation of America (RCA) capacitance sensor, and rely on the detection of the frequency shift of a resonator. High operating frequency for the resonator significantly improves the measurement sensitivity. In this article, we describe a sensor for SCM with sub-zeptofarad (&lt; 10-21 F) sensitivity based on the designs of Tran et. al., but realized using a phase – sensitive detection system. This results in improved low frequency noise in the capacitance measurement. This design has an operating frequency of 3 GHz when unloaded and a resonator Q around 110, resulting in an improvement of the system sensitivity over the conventional RCA CED sensor, and may be used in a commercial AFM system. The performance of this sensor is discussed and two-dimensional dopant profile from a semiconductor structure is presented. The limitations of bulk resonator SCM systems are discussed and the prospects for monolithic sensors are described in the context of a 0.35 µm SiGe BiCMOS process.


Author(s):  
Waldemar Smolik ◽  
Jacek Kryszyn ◽  
Tomasz Olszewski ◽  
Roman Szabatin

The paper presents the main methods of small capacitance measurement used in electrical capacitance tomography: the AC method with a sine wave excitation and the charge-discharge method with square wave excitation. Construction of synchronous detector for both circuits was discussed. A modified "charge-discharge" method was presented.


2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


2014 ◽  
Vol E97.C (11) ◽  
pp. 1117-1123 ◽  
Author(s):  
Katsuhiro TSUJI ◽  
Kazuo TERADA ◽  
Ryota KIKUCHI

Author(s):  
P. Larré ◽  
H. Tupin ◽  
C. Charles ◽  
R.H. Newton ◽  
A. Reverdy

Abstract As technology nodes continue to shrink, resistive opens have become increasingly difficult to detect using conventional methods such as AVC and PVC. The failure isolation method, Electron Beam Absorbed Current (EBAC) Imaging has recently become the preferred method in failure analysis labs for fast and highly accurate detection of resistive opens and shorts on a number of structures. This paper presents a case study using a two nanoprobe EBAC technique on a 28nm node test structure. This technique pinpointed the fail and allowed direct TEM lamella.


1999 ◽  
Vol 64 (9) ◽  
pp. 1510-1516
Author(s):  
Helena Ryšlavá ◽  
Jana Krešlová ◽  
Jana Barthová ◽  
Tomislav Barth

A new method for isolation of glycoproteins from chicken pituitaries was applied. The procedure consist of chromatography on ConA-Sepharose and by HPLC on S Hyper D and Vydac C4 columns. The hormonal activity of the glycoproteins was tested by determining their stimulatory effect on cAMP or testosterone production. Molecular weights of the products of tryptic cleavage of the hormone were determined using mass spectrometry (MALDI TOF). A comparison of the values obtained with theory shows that the protein is the β-unit of chicken luteinizing hormone.


Sign in / Sign up

Export Citation Format

Share Document