An Evolutionary Algorithm Using Multi-Strategy Combination for Single Objective Optimization Problem

Author(s):  
Jinhui Chen ◽  
Junying Chen ◽  
Huaqing Min
Author(s):  
Muhammad Zakyizzuddin Bin Rosselan ◽  
Shahril Irwan Bin Sulaiman ◽  
Norhalida Othman

In this study proposes an evaluation of different computational intelligences, i.e Fast-Evolutionary Algorithm (FEP), Firefly Algorithm (FA) and Mutate-Cuckoo Search Algorithm (MCSA) for solving single-objective optimization problem. FEP and MCSA are based on the conventional Evolutionary Programming (EP) and Cuckoo Search Algorithm (CSA) with modifications and adjustment to boost up their search ability. In this paper, four different benchmark functions were used to compare the optimization performance of these three algorithms. The results showed that MCSA is better compare with FEP and FA in term of fitness value while FEP is fastest algorithm in term of computational time compare with other two algorithms.


2012 ◽  
Vol 20 (1) ◽  
pp. 27-62 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Amit Saha

In a multimodal optimization task, the main purpose is to find multiple optimal solutions (global and local), so that the user can have better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be switched to another suitable optimum solution. To this end, evolutionary optimization algorithms (EA) stand as viable methodologies mainly due to their ability to find and capture multiple solutions within a population in a single simulation run. With the preselection method suggested in 1970, there has been a steady suggestion of new algorithms. Most of these methodologies employed a niching scheme in an existing single-objective evolutionary algorithm framework so that similar solutions in a population are deemphasized in order to focus and maintain multiple distant yet near-optimal solutions. In this paper, we use a completely different strategy in which the single-objective multimodal optimization problem is converted into a suitable bi-objective optimization problem so that all optimal solutions become members of the resulting weak Pareto-optimal set. With the modified definitions of domination and different formulations of an artificially created additional objective function, we present successful results on problems with as large as 500 optima. Most past multimodal EA studies considered problems having only a few variables. In this paper, we have solved up to 16-variable test problems having as many as 48 optimal solutions and for the first time suggested multimodal constrained test problems which are scalable in terms of number of optima, constraints, and variables. The concept of using bi-objective optimization for solving single-objective multimodal optimization problems seems novel and interesting, and more importantly opens up further avenues for research and application.


Author(s):  
Gabriele Eichfelder ◽  
Kathrin Klamroth ◽  
Julia Niebling

AbstractA major difficulty in optimization with nonconvex constraints is to find feasible solutions. As simple examples show, the $$\alpha $$ α BB-algorithm for single-objective optimization may fail to compute feasible solutions even though this algorithm is a popular method in global optimization. In this work, we introduce a filtering approach motivated by a multiobjective reformulation of the constrained optimization problem. Moreover, the multiobjective reformulation enables to identify the trade-off between constraint satisfaction and objective value which is also reflected in the quality guarantee. Numerical tests validate that we indeed can find feasible and often optimal solutions where the classical single-objective $$\alpha $$ α BB method fails, i.e., it terminates without ever finding a feasible solution.


2013 ◽  
Vol 21 (1) ◽  
pp. 65-82 ◽  
Author(s):  
Hemant Kumar Singh ◽  
Tapabrata Ray ◽  
Ruhul Sarker

In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.


2019 ◽  
Vol 44 (4) ◽  
pp. 407-426
Author(s):  
Jedrzej Musial ◽  
Emmanuel Kieffer ◽  
Mateusz Guzek ◽  
Gregoire Danoy ◽  
Shyam S. Wagle ◽  
...  

Abstract Cloud computing has become one of the major computing paradigms. Not only the number of offered cloud services has grown exponentially but also many different providers compete and propose very similar services. This situation should eventually be beneficial for the customers, but considering that these services slightly differ functionally and non-functionally -wise (e.g., performance, reliability, security), consumers may be confused and unable to make an optimal choice. The emergence of cloud service brokers addresses these issues. A broker gathers information about services from providers and about the needs and requirements of the customers, with the final goal of finding the best match. In this paper, we formalize and study a novel problem that arises in the area of cloud brokering. In its simplest form, brokering is a trivial assignment problem, but in more complex and realistic cases this does not longer hold. The novelty of the presented problem lies in considering services which can be sold in bundles. Bundling is a common business practice, in which a set of services is sold together for the lower price than the sum of services’ prices that are included in it. This work introduces a multi-criteria optimization problem which could help customers to determine the best IT solutions according to several criteria. The Cloud Brokering with Bundles (CBB) models the different IT packages (or bundles) found on the market while minimizing (maximizing) different criteria. A proof of complexity is given for the single-objective case and experiments have been conducted with a special case of two criteria: the first one being the cost and the second is artificially generated. We also designed and developed a benchmark generator, which is based on real data gathered from 19 cloud providers. The problem is solved using an exact optimizer relying on a dichotomic search method. The results show that the dichotomic search can be successfully applied for small instances corresponding to typical cloud-brokering use cases and returns results in terms of seconds. For larger problem instances, solving times are not prohibitive, and solutions could be obtained for large, corporate clients in terms of minutes.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Mehdi Babaei ◽  
◽  
Masoud Mollayi ◽  

Genetic algorithm (GA) and differential evolution (DE) are metaheuristic algorithms that have shown a favorable performance in the optimization of complex problems. In recent years, only GA has been widely used for single-objective optimal design of reinforced concrete (RC) structures; however, it has been applied for multiobjective optimization of steel structures. In this article, the total structural cost and the roof displacement are considered as objective functions for the optimal design of the RC frames. Using the weighted sum method (WSM) approach, the two-objective optimization problem is converted to a single-objective optimization problem. The size of the beams and columns are considered as design variables, and the design requirements of the ACI-318 are employed as constraints. Five numerical models are studied to test the efficiency of the GA and DE algorithms. Pareto front curves are obtained for the building models using both algorithms. The detailed results show the accuracy and convergence speed of the algorithms.


10.29007/7p6t ◽  
2018 ◽  
Author(s):  
Pascal Richter ◽  
David Laukamp ◽  
Levin Gerdes ◽  
Martin Frank ◽  
Erika Ábrahám

The exploitation of solar power for energy supply is of increasing importance. While technical development mainly takes place in the engineering disciplines, computer science offers adequate techniques for optimization. This work addresses the problem of finding an optimal heliostat field arrangement for a solar tower power plant.We propose a solution to this global, non-convex optimization problem by using an evolutionary algorithm. We show that the convergence rate of a conventional evolutionary algorithm is too slow, such that modifications of the recombination and mutation need to be tailored to the problem. This is achieved with a new genotype representation of the individuals.Experimental results show the applicability of our approach.


2012 ◽  
Vol 433-440 ◽  
pp. 2808-2816
Author(s):  
Jian Jin Zheng ◽  
You Shen Xia

This paper presents a new interactive neural network for solving constrained multi-objective optimization problems. The constrained multi-objective optimization problem is reformulated into two constrained single objective optimization problems and two neural networks are designed to obtain the optimal weight and the optimal solution of the two optimization problems respectively. The proposed algorithm has a low computational complexity and is easy to be implemented. Moreover, the proposed algorithm is well applied to the design of digital filters. Computed results illustrate the good performance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document