Design of an X-Band Filter Limiting RF Receiver Front-End With Withstanding 250W Pulse Power

Author(s):  
Liang Li ◽  
Kun Chen ◽  
Hongbo Yin ◽  
Fei Guan ◽  
Dahai Ni
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2662
Author(s):  
José A. López-Pérez ◽  
Félix Tercero-Martínez ◽  
José M. Serna-Puente ◽  
Beatriz Vaquero-Jiménez ◽  
María Patino-Esteban ◽  
...  

This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Bodhisatwa Sadhu ◽  
Martin Sturm ◽  
Brian M. Sadler ◽  
Ramesh Harjani

This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors remain the most challenging block in the software defined radio hardware design. The use of passive switched capacitors provides a very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology, modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5 GHz broadband front end that consumes only 4 mW power.


2008 ◽  
Vol 47 (5) ◽  
pp. 4007-4010 ◽  
Author(s):  
Masanori Ueda ◽  
Motoaki Hara ◽  
Shinji Taniguchi ◽  
Tsuyoshi Yokoyama ◽  
Tokihiro Nishihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document