scholarly journals Auto-Tuning Control of a Switched-Mode Power Converter for Tailored Pulse-Shape Biased Plasma Etching Applications

Author(s):  
Qihao Yu ◽  
Erik Lemmen ◽  
Korneel Wijnands ◽  
Bas Vermulst
1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


Author(s):  
Richard G. Sartore

In the evaluation of GaAs devices from the MMIC (Monolithic Microwave Integrated Circuits) program for Army applications, there was a requirement to obtain accurate linewidth measurements on the nominal 0.5 micrometer gate lengths used to fabricate these devices. Preliminary measurements indicated a significant variation (typically 10 % to 30% but could be more) in the critical dimensional measurements of the gate length, gate to source distance and gate to drain distance. Passivation introduced a margin of error, which was removed by plasma etching. Additionally, the high aspect ratio (4-5) of the thick gold (Au) conductors also introduced measurement difficulties. The final measurements were performed after the thick gold conductor was removed and only the barrier metal remained, which was approximately 250 nanometer thick platinum on GaAs substrate. The thickness was measured using the penetration voltage method. Linescan of the secondary electron signal as it scans across the gate is shown in Figure 1.


Author(s):  
F. Banhart ◽  
F.O. Phillipp ◽  
R. Bergmann ◽  
E. Czech ◽  
M. Konuma ◽  
...  

Defect-free silicon layers grown on insulators (SOI) are an essential component for future three-dimensional integration of semiconductor devices. Liquid phase epitaxy (LPE) has proved to be a powerful technique to grow high quality SOI structures for devices and for basic physical research. Electron microscopy is indispensable for the development of the growth technique and reveals many interesting structural properties of these materials. Transmission and scanning electron microscopy can be applied to study growth mechanisms, structural defects, and the morphology of Si and SOI layers grown from metallic solutions of various compositions.The treatment of the Si substrates prior to the epitaxial growth described here is wet chemical etching and plasma etching with NF3 ions. At a sample temperature of 20°C the ion etched surface appeared rough (Fig. 1). Plasma etching at a sample temperature of −125°C, however, yields smooth and clean Si surfaces, and, in addition, high anisotropy (small side etching) and selectivity (low etch rate of SiO2) as shown in Fig. 2.


2010 ◽  
Vol 130 (5) ◽  
pp. 646-654 ◽  
Author(s):  
Miao Hong ◽  
Satoshi Horie ◽  
Yushi Miura ◽  
Tosifumi Ise ◽  
Yuki Sato ◽  
...  

2020 ◽  
Vol 140 (3) ◽  
pp. 140-147
Author(s):  
Koji Takechi ◽  
Takeshi Yokoi ◽  
Hiroaki Kakigano

Sign in / Sign up

Export Citation Format

Share Document