Semantic Monte-Carlo localization in changing environments using RGB-D cameras

Author(s):  
Marian Himstedt ◽  
Erik Maehle
2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773275 ◽  
Author(s):  
Francisco J Perez-Grau ◽  
Fernando Caballero ◽  
Antidio Viguria ◽  
Anibal Ollero

This article presents an enhanced version of the Monte Carlo localization algorithm, commonly used for robot navigation in indoor environments, which is suitable for aerial robots moving in a three-dimentional environment and makes use of a combination of measurements from an Red,Green,Blue-Depth (RGB-D) sensor, distances to several radio-tags placed in the environment, and an inertial measurement unit. The approach is demonstrated with an unmanned aerial vehicle flying for 10 min indoors and validated with a very precise motion tracking system. The approach has been implemented using the robot operating system framework and works smoothly on a regular i7 computer, leaving plenty of computational capacity for other navigation tasks such as motion planning or control.


2021 ◽  
Vol 45 (6) ◽  
pp. 843-857
Author(s):  
Russell Buchanan ◽  
Jakub Bednarek ◽  
Marco Camurri ◽  
Michał R. Nowicki ◽  
Krzysztof Walas ◽  
...  

AbstractLegged robot navigation in extreme environments can hinder the use of cameras and lidar due to darkness, air obfuscation or sensor damage, whereas proprioceptive sensing will continue to work reliably. In this paper, we propose a purely proprioceptive localization algorithm which fuses information from both geometry and terrain type to localize a legged robot within a prior map. First, a terrain classifier computes the probability that a foot has stepped on a particular terrain class from sensed foot forces. Then, a Monte Carlo-based estimator fuses this terrain probability with the geometric information of the foot contact points. Results demonstrate this approach operating online and onboard an ANYmal B300 quadruped robot traversing several terrain courses with different geometries and terrain types over more than 1.2 km. The method keeps pose estimation error below 20 cm using a prior map with trained network and using sensing only from the feet, leg joints and IMU.


Author(s):  
Kemal Kaplan ◽  
Buluç Çelik ◽  
Tekin Meriçli ◽  
Çetin Meriçli ◽  
H. Levent Akın

Author(s):  
Paloma Carrasco ◽  
Francisco Cuesta ◽  
Rafael Caballero ◽  
Francisco J. Perez-Grau ◽  
Antidio Viguria

Automatika ◽  
2019 ◽  
Vol 60 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Cuiran Li ◽  
Jianli Xie ◽  
Wei Wu ◽  
Haoshan Tian ◽  
Yingxin Liang

Sign in / Sign up

Export Citation Format

Share Document