Reliability Analysis of SnPb and SnAgCu Solder Joints in FC-BGA Packages with Thermal Enabling Preload

Author(s):  
P.K. Bhatti ◽  
Min Pei ◽  
Xuejun Fan
2007 ◽  
Vol 47 (12) ◽  
pp. 2161-2168 ◽  
Author(s):  
Weiqun Peng ◽  
Eduardo Monlevade ◽  
Marco E. Marques

2020 ◽  
Vol 54 ◽  
pp. 221-227
Author(s):  
Waluyo Adi Siswanto ◽  
M. Arun ◽  
Irina V. Krasnopevtseva ◽  
A. Surendar ◽  
Andino Maseleno

Author(s):  
Jicheng Gong ◽  
Changqing Liu ◽  
Paul P. Conway ◽  
Vadim V. Silberschmidt

2018 ◽  
Vol 47 (5) ◽  
pp. 2526-2544 ◽  
Author(s):  
Peter Borgesen ◽  
Luke Wentlent ◽  
Sa’d Hamasha ◽  
Saif Khasawneh ◽  
Sam Shirazi ◽  
...  

Author(s):  
Yong Liu ◽  
Howard Allen ◽  
Stephen Martin

This paper presents a power stack die package design for a point of load buck converter. The buck converter system in package (SiP) consists of a lower side Mosfet and a high side Mosfet together with an IC controller. Its structure includes a premolded leadframe with an IC controller. The two Mosfets (both low side and higher side) are stacked on the premolded leadfrrame (LF) and IC controller. Solder balls are placed on the leadframe’s exposed lands, and together with the two drains of Mosfets, to form the stacked die power package. The thermal cycling simulations for the solder balls to connect the PCB and solder joints of the two Mosfet die to the leadframe pads are studied. The failure mechanism and reliability analysis of the power package in TMCL test are discussed.


2008 ◽  
Vol 23 (5) ◽  
pp. 1482-1487 ◽  
Author(s):  
Yuhuan Xu ◽  
Shengquan Ou ◽  
K.N. Tu ◽  
Kejun Zeng ◽  
Rajiv Dunne

The most frequent cause of failure for wireless, handheld, and portable consumer electronic products is an accidental drop to the ground. The impact may cause interfacial fracture of ball-grid-array solder joints. Existing metrology, such as ball shear and ball pull tests, cannot characterize the impact-induced high speed fracture failure. In this study, a mini-impact tester was utilized to measure the impact toughness and to characterize the impact reliability of both eutectic SnPb and SnAgCu solder joints. The annealing effect at 150 °C on the impact toughness was investigated, and the fractured surfaces were examined. The impact toughness of SnAgCu solder joints with the plating of electroless Ni/immersion Au (ENIG) became worse after annealing, decreasing from 10 or 11 mJ to 7 mJ. On the other hand, an improvement of the impact toughness of eutectic SnPb solder joints with ENIG was recorded after annealing, increasing from 6 or 10 to 15 mJ. Annealing has softened the bulk SnPb solder so that more plastic deformation can occur to absorb the impact energy.


Sign in / Sign up

Export Citation Format

Share Document