scholarly journals Mechanical Behaviour of Grains in SnAgCu Solder Joints

Author(s):  
Jicheng Gong ◽  
Changqing Liu ◽  
Paul P. Conway ◽  
Vadim V. Silberschmidt
2007 ◽  
Vol 47 (12) ◽  
pp. 2161-2168 ◽  
Author(s):  
Weiqun Peng ◽  
Eduardo Monlevade ◽  
Marco E. Marques

2020 ◽  
Vol 54 ◽  
pp. 221-227
Author(s):  
Waluyo Adi Siswanto ◽  
M. Arun ◽  
Irina V. Krasnopevtseva ◽  
A. Surendar ◽  
Andino Maseleno

2018 ◽  
Vol 47 (5) ◽  
pp. 2526-2544 ◽  
Author(s):  
Peter Borgesen ◽  
Luke Wentlent ◽  
Sa’d Hamasha ◽  
Saif Khasawneh ◽  
Sam Shirazi ◽  
...  

2008 ◽  
Vol 23 (5) ◽  
pp. 1482-1487 ◽  
Author(s):  
Yuhuan Xu ◽  
Shengquan Ou ◽  
K.N. Tu ◽  
Kejun Zeng ◽  
Rajiv Dunne

The most frequent cause of failure for wireless, handheld, and portable consumer electronic products is an accidental drop to the ground. The impact may cause interfacial fracture of ball-grid-array solder joints. Existing metrology, such as ball shear and ball pull tests, cannot characterize the impact-induced high speed fracture failure. In this study, a mini-impact tester was utilized to measure the impact toughness and to characterize the impact reliability of both eutectic SnPb and SnAgCu solder joints. The annealing effect at 150 °C on the impact toughness was investigated, and the fractured surfaces were examined. The impact toughness of SnAgCu solder joints with the plating of electroless Ni/immersion Au (ENIG) became worse after annealing, decreasing from 10 or 11 mJ to 7 mJ. On the other hand, an improvement of the impact toughness of eutectic SnPb solder joints with ENIG was recorded after annealing, increasing from 6 or 10 to 15 mJ. Annealing has softened the bulk SnPb solder so that more plastic deformation can occur to absorb the impact energy.


2011 ◽  
Vol 687 ◽  
pp. 39-43
Author(s):  
Yao Li Wang ◽  
Gai Hong Dong ◽  
Chen Yang Li ◽  
Zhi Wei Wu ◽  
Jing Sun

Creep property is one of the most important factors to affect the reliability of soldered joints. The effect of rare earth(RE) on the creep rupture life of Sn2.5Ag0.7Cu solder joints were investigated under constant temperature and stress using creep specimens with a 1mm2cross sectional area. The results show that adding tiny RE in Sn2.5Ag0.7Cu solder alloy can effectually affect the size and configuration of the intermetallic compound (IMC) of interfacial layer. The IMC of Sn2.5Ag0.7Cu interfacial layer is thinner and its thickness is homogeneous with adding 0.1% RE, and the creep rupture life of solder joints is longest, which is apparently superior to that of Sn2.5Ag0.7Cu and commercial used Sn3.8Ag0.7Cu solder alloy.


Sign in / Sign up

Export Citation Format

Share Document