Two-dimensional (2D) in-plane strain mapping using a laser scanning technique on the cross-section of a microelectronics package

Author(s):  
Hanshuang Liang ◽  
Todd Houghton ◽  
Zeming Song ◽  
Teng Ma ◽  
Hoa Nguyen ◽  
...  
2016 ◽  
Vol 693 ◽  
pp. 734-739 ◽  
Author(s):  
Li Jie Wang ◽  
Brad L. Kinsey ◽  
Sunal Parasiz

As components with proportional feature and tooling sizes are miniaturized, strain gradients through the cross-section increase. This causes strain gradient hardening as the density of geometrically necessary dislocations increases. This will lead to higher required forces in the process than expected. In this paper, an analytical model to predict the dislocation density increases, and thus strain gradient hardening, during microbending is presented. These results match previous research in terms of the feature size where modest and significant strain gradient hardening was observed.


2009 ◽  
Vol 23 (13) ◽  
pp. 1687-1694 ◽  
Author(s):  
ZHONGFEI MU ◽  
FUGEN WU

The acoustic band structures of two kinds of acoustic crystals (two-dimensional periodic arrays of rigid solid rods embedded in air with two different configurations) have been studied by the plane-wave expansion (PWE) method based on super cell calculation. The translation group symmetry of the acoustic crystal is changed by changing the area of the cross section of adjacent rods. We found that by changing the translation group symmetry, one can effectively adjust the acoustic band gaps (ABGs). In the case that the cross section of scattering rods is square without any rotation, the decrease of translation group symmetry is advantaged to form ABGs. But when the cross section of scattering rods is square with a rotation of 45°, the decrease of translation group symmetry is disadvantaged to form ABGs.


1975 ◽  
Vol 15 (04) ◽  
pp. 269-276 ◽  
Author(s):  
J.R. Kyte ◽  
D.W. Berry

Abstract This paper presents an improved procedure for calculating dynamic pseudo junctions that may be used in two-dimensional, areal reservoir simulations to approximate three-dimensional reservoir behavior. Comparison of one-dimensional areal and two-dimensional vertical cross-sectional results for two example problems shows that the new pseudos accurately transfer problems shows that the new pseudos accurately transfer the effects of vertical variations in reservoir properties, fluid pressures, and saturations from the properties, fluid pressures, and saturations from the cross-sectional model to the areal model. The procedure for calculating dynamic pseudo-relative permeability accounts for differences in computing block lengths between the areal and cross-sectional models. Dynamic pseudo-capillary pressure transfers the effects of pseudo-capillary pressure transfers the effects of different pressure gradients in different layers of the cross-sectional model to the areal model. Introduction Jacks et al. have published procedures for calculating dynamic pseudo-relative permeabilities fro m vertical cross-section model runs. Their procedures for calculating pseudo functions are procedures for calculating pseudo functions are more widely applicable than other published approaches. They demonstrated that, in some cases, the derived pseudo functions could be used to simulate three-dimensional reservoir behavior using two-dimensional areal simulators. For our purposes, an areal simulator is characterized by purposes, an areal simulator is characterized by having only one computing block in the vertical dimension. The objectives of this paper are to present an improved procedure for calculating dynamic pseudo functions, including a dynamic pseudo-capillary pressure, and to demonstrate that the new procedure pressure, and to demonstrate that the new procedure generally is more applicable than any of the previously published approaches. The new pseudos previously published approaches. The new pseudos are similar to those derived by jacks et al. in that they are calculated from two-dimensional, vertical cross-section runs. They differ because (1) they account for differences in computing block lengths between the cross-sectional and areal models, and (2) they transfer the effects of different flow potentials in different layers of the cross-sectional potentials in different layers of the cross-sectional model to the areal model. Differences between cross-sectional and areal model block lengths are sometimes desirable to reduce data handling and computing costs for two-dimensional, areal model runs. For very large reservoirs, even when vertical calculations are eliminated by using pseudo functions, as many as 50,000 computing blocks might be required in the two-dimensional areal model to minimize important errors caused by numerical dispersion. The new pseudos, of course, cannot control numerical pseudos, of course, cannot control numerical dispersion in the cross-sectional runs. This is done by using a sufficiently large number of computing blocks along die length of the cross-section. The new pseudos then insure that no additional dispersion will occur in the areal model, regardless of the areal computing block lengths. Using this approach, the number of computing blocks in the two-dimensional areal model is reduced by a factor equal to the square of the ratio of the block lengths for the cross-sectional and areal models. The new pseudos do not prevent some loss in areal flow-pattern definition when the number of computing blocks in the two-dimensional areal model is reduced. A study of this problem and associated errors is beyond the scope of this paper. Our experience suggests that, for very large reservoirs with flank water injection, 1,000 or 2,000 blocks provide satisfactory definition. Many more blocks provide satisfactory definition. Many more blocks might be required for large reservoirs with much more intricate areal flow patterns. The next section presents comparative results for cross-sectional and one-dimensional areal models. These results demonstrate the reliability of the new pseudo functions and illustrate their advantages pseudo functions and illustrate their advantages over previously derived pseudos for certain situations. The relationship between two-dimensional, vertical cross-sectional and one-dimensional areal reservoir simulators has been published previously and will not be repeated here in any detail. Ideally, the pseudo functions should reproduce two-dimensional, vertical cross-sectional results when they are used in the corresponding one-dimensional areal model. SPEJ P. 269


2008 ◽  
Vol 41 (15) ◽  
pp. 3145-3151 ◽  
Author(s):  
Clare E. Canal ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

2019 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Zhen Cao ◽  
Dong Chen ◽  
Yufeng Shi ◽  
Zhenxin Zhang ◽  
Fengxiang Jin ◽  
...  

This paper presents a novel framework to extract metro tunnel cross sections (profiles) from Terrestrial Laser Scanning point clouds. The entire framework consists of two steps: tunnel central axis extraction and cross section determination. In tunnel central extraction, we propose a slice-based method to obtain an initial central axis, which is further divided into linear and nonlinear circular segments by an enhanced Random Sample Consensus (RANSAC) tunnel axis segmentation algorithm. This algorithm transforms the problem of hybrid linear and nonlinear segment extraction into a sole segmentation of linear elements defined at the tangent space rather than raw data space, significantly simplifying the tunnel axis segmentation. The extracted axis segments are then provided as input to the step of the cross section determination which generates the coarse cross-sectional points by intersecting a series of straight lines that rotate orthogonally around the tunnel axis with their local fitted quadric surface, i.e., cylindrical surface. These generated profile points are further refined and densified via solving a constrained nonlinear least squares problem. Our experiments on Nanjing metro tunnel show that the cross sectional fitting error is only 1.69 mm. Compared with the designed radius of the metro tunnel, the RMSE (Root Mean Square Error) of extracted cross sections’ radii only keeps 1.60 mm. We also test our algorithm on another metro tunnel in Shanghai, and the results show that the RMSE of radii only keeps 4.60 mm which is superior to a state-of-the-art method of 6.00 mm. Apart from the accurate geometry, our approach can maintain the correct topology among cross sections, thereby guaranteeing the production of geometric tunnel model without crack defects. Moreover, we prove that our algorithm is insensitive to the missing data and point density.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Haoli Wang ◽  
Pengwei Wang

Measurements of velocity and pressure differences for flows in porous chip fabricated with micropost arrays arranged in square pattern were implemented by using micro-particle image velocimetry (micro-PIV) and high precision micromanometer. Based on the measurement results, the permeability was solved by Brinkman equation under the averaged velocities over the cross section, two-dimensional velocities on the center plane of the microchannels, and the averaged velocities on the center plane considering the effect of depth of correlation (DOC), respectively. The experimental results indicate that the nondimensional permeability based on different velocities satisfies the Kozeny–Carman (KC) equation. The Kozeny factor is taken as 40 for the averaged velocity over the cross section and 15 for two kinds of center velocities based on the micropost array of this study, respectively. The permeability calculated by the velocities on the center plane is greater than that by the averaged velocity over the cross section.


2021 ◽  
Vol 1 ◽  
pp. 1401-1410
Author(s):  
Martin Denk ◽  
Klemens Rother ◽  
Tobias Höfer ◽  
Jan Mehlstäubl ◽  
Kristin Paetzold

AbstractPolygon meshes and particularly triangulated meshes can be used to describe the shape of different types of geometry such as bicycles, bridges, or runways. In engineering, such polygon meshes can be supplied as finite element meshes, resulting from topology optimization or from laser scanning. Especially from topology optimization, frame-like polygon meshes with slender parts are typical and often have to be converted into a CAD (Computer-Aided Design) format, e.g., for further geometrical detailing or performing additional shape optimization. Especially for such frame-like geometries, CAD designs are constructed as beams with cross-sections and beam-lines, whereby the cross-section is extruded along the beam-lines or beam skeleton. One major task in the recognition of beams is the classification of the cross-section type such as I, U, or T, which is addressed in this article. Therefore, a dataset consisting of different cross-sections represented as binary images is created. Noisy dilatation, the distance transformation, and main axis rotation are applied to these images to increase the robustness and reduce the necessary amount of samples. The resulting images are applied to a convolutional neuronal network.


Author(s):  
L. Du ◽  
R. Zhong ◽  
H. Sun ◽  
Q. Wu

An automated method for tunnel deformation monitoring using high density point clouds data is presented. Firstly, the 3D point clouds data are converted to two-dimensional surface by projection on the XOY plane, the projection point set of central axis on XOY plane named U<sub>xoy</sub> is calculated by combining the Alpha Shape algorithm with RANSAC (Random Sampling Consistency) algorithm, and then the projection point set of central axis on YOZ plane named Uyoz is obtained by highest and lowest points which are extracted by intersecting straight lines that through each point of U<sub>xoy</sub> and perpendicular to the two -dimensional surface with the tunnel point clouds, U<sub>xoy</sub> and U<sub>yoz</sub> together form the 3D center axis finally. Secondly, the buffer of each cross section is calculated by K-Nearest neighbor algorithm, and the initial cross-sectional point set is quickly constructed by projection method. Finally, the cross sections are denoised and the section lines are fitted using the method of iterative ellipse fitting. In order to improve the accuracy of the cross section, a fine adjustment method is proposed to rotate the initial sectional plane around the intercept point in the horizontal and vertical direction within the buffer. The proposed method is used in Shanghai subway tunnel, and the deformation of each section in the direction of 0 to 360 degrees is calculated. The result shows that the cross sections becomes flat circles from regular circles due to the great pressure at the top of the tunnel


Vestnik MGSU ◽  
2019 ◽  
pp. 12-21
Author(s):  
Andrey V. Mishchenko

Introduction. Presents a method for modeling a two-dimensional stationary temperature field in a layered rod. The peculiarity of the structure of the rod is the presence of discontinuity of the width of the cross section in the direction of heat flow and multilayer. Identification of the temperature field in such rods is a necessary step in solving the problem of thermoelasticity. The relevance of the problem lies in the development of analytical methods for analysis layered rods of complex geometric shape with thermal effects, with acceptable computational complexity and necessary accuracy. Materials and methods. For a multilayer rod, a method for constructing an approximate solution of the Dirichlet stationary heat conduction problem with a transverse heat flow direction is considered. Within each layer, the temperature distribution function is represented as a sum of two functions. The first function, linear in the direction of the heat flow, reflects the exact solution of the problem for a rectangular layered section. The second function is the correction nonlinear function of two variables. It describes the nonlinear distortions of the temperature field due to the presence of discontinuities in the width of the cross section. The correction function, according to the Fourier method, is represented as a product of a given coordinate function and the sum of the sought amplitudes caused by the width breaks. The functions of the effect of breaking the width on temperature fields in adjacent layers are introduced. An approximate formulation of the Dirichlet problem with integral conjugation conditions on interlayer boundaries is formulated. Results. The parameters of the stationary temperature field were calculated for a seven-layer section of a T-shaped form with alternating layers of carbon and steel. Testing the results of the Ansys program showed good qualitative and quantitative correspondence of two-dimensional temperature fields. Conclusions. The obtained solution satisfactorily describes the temperature field in the cross section of a layered rod in the vicinity of its geometric features. The method is characterized by acceptable laboriousness and accuracy suitable for solving the problem of thermoelasticity of a layered rod.


Sign in / Sign up

Export Citation Format

Share Document