How do packet losses affect measures of averaged neural signalsƒ

Author(s):  
Evan M. Dastin-van Rijn ◽  
Nicole R. Provenza ◽  
Matthew T. Harrison ◽  
David A. Borton
Keyword(s):  
Automatica ◽  
2021 ◽  
Vol 131 ◽  
pp. 109716
Author(s):  
Lili Li ◽  
Jun Fu ◽  
Yu Zhang ◽  
Tianyou Chai ◽  
Linyang Song ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 4064
Author(s):  
Muktar Hussaini ◽  
Muhammad Ali Naeem ◽  
Byung-Seo Kim

Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, the architecture is still facing challenges for managing content producer mobility. Despite the efforts of many researchers that curtailed the high handoff latency and signaling overhead, there are still some prominent challenges, such as non-optimal routing path, long delay for data delivery and unnecessary interest packet losses. This paper proposed a solution to minimize unnecessary interest packet losses, delay and provide data path optimization when the mobile producer relocates by using mobility update, broadcasting and best route strategies. The proposed solution is implemented, evaluated and benchmarked with an existing Kite solution. The performance analysis result revealed that our proposed Optimal Producer Mobility Support Solution (OPMSS) minimizes the number of unnecessary interest packets lost on average by 30%, and an average delay of 25% to 30%, with almost equal and acceptable signaling overhead costs. Furthermore, it provides a better data packet delivery route than the Kite solution.


2006 ◽  
Vol 34 (3) ◽  
pp. 27-29 ◽  
Author(s):  
Fernando Silveira ◽  
Edmundo de Souza e Silva
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 68
Author(s):  
Steven Knowles Flanagan ◽  
Zuoyin Tang ◽  
Jianhua He ◽  
Irfan Yusoff

Dedicated Short-Range Communication (DSRC) or IEEE 802.11p/OCB (Out of the Context of a Base-station) is widely considered to be a primary technology for Vehicle-to-Vehicle (V2V) communication, and it is aimed toward increasing the safety of users on the road by sharing information between one another. The requirements of DSRC are to maintain real-time communication with low latency and high reliability. In this paper, we investigate how communication can be used to improve stopping distance performance based on fieldwork results. In addition, we assess the impacts of reduced reliability, in terms of distance independent, distance dependent and density-based consecutive packet losses. A model is developed based on empirical measurements results depending on distance, data rate, and traveling speed. With this model, it is shown that cooperative V2V communications can effectively reduce reaction time and increase safety stop distance, and highlight the importance of high reliability. The obtained results can be further used for the design of cooperative V2V-based driving and safety applications.


Sign in / Sign up

Export Citation Format

Share Document