Technical aspects of common-mode leakage current suppression in pv-generation systems

Author(s):  
Evgeny Grishanov ◽  
Sergey Brovanov ◽  
Maxim Dybko ◽  
Sergey Kharitonov ◽  
Sergey Leonov
Author(s):  
Aleksey Vyacheslavovich Udovichenko ◽  
Sergey Viktorovich Brovanov ◽  
Evgeny Valerievich Grishanov ◽  
Svetlana Mikhailovna Stennikova

Power generation systems based on renewable energy sources are finding ever-widening applications and many researchers work on this problem. Many papers address the problem of transformerless structures, but few of them are aimed at conducting research on structures with multilevel converter topologies. In this paper a grid-tied transformerless PV-generation system based on a multilevel converter is discussed. There are common-mode leakage currents which act as a parasitic factor. It is also known that common-mode voltage is the main cause of the common-mode leakage current in grid-tied PV-generation systems. This paper considers the space vector pulse-width modulation (PWM) technique which is used to suppress or reduce common-mode leakage current. The proposed engineering solutions for a generation system based on the multilevel converter controlled with a pulse-width modulation technique are verified by experiment.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2382
Author(s):  
Aleksey V. Udovichenko ◽  
Sergey V. Brovanov ◽  
Evgeny V. Grishanov ◽  
Svetlana M. Stennikova

Power generation systems (PGSs) based on renewable energy sources are finding ever-widening applications, and many researchers work on this problem. Many papers address the problem of transformerless PGSs, but few of them aimed at conducting research on structures with multilevel converter topologies as part of a PGS. In this paper a grid-tied transformerless PV-generation system based on a multilevel converter is discussed. There are common-mode leakage currents (CMLCs), which act as a parasitic factor. It is also known that common-mode voltage is the main cause of the common-mode leakage current in grid-tied PV-generation systems. This paper considers the space vector pulse-width modulation (PWM) technique, which is used to suppress or reduce common-mode leakage current. The proposed PWM technique with the reduction of common-mode leakage current for a generation system based on the multilevel converter controlled with a PWM technique was verified experimentally. The experimental results accurately confirmed the mathematical model and the compensation achieved without errors. In the experiment, there was an approximately six-fold decrease in the common-mode leakage current (10.3 mA in rejection mode and 61 mA in non-rejection current). This can lead to the elimination of CMLC in a multilevel semiconductor converter only by changing the modulation mode. This suggests the possibility of using these devices as part of transformerless generation systems. Suppression of CMLC can only be carried out by changing the PWM algorithm. Both considered topologies can implement this mode of operation. The proposed converter has a higher efficiency up to a frequency multiplicity of 2000.


2020 ◽  
Vol 35 (2) ◽  
pp. 1269-1281 ◽  
Author(s):  
Ashraf Ali Khan ◽  
Yun W. Lu ◽  
Wilson Eberle ◽  
Liwei Wang ◽  
Usman Ali Khan ◽  
...  

2016 ◽  
Vol 65 (3) ◽  
pp. 481-493 ◽  
Author(s):  
D. John Sundar ◽  
M. Senthil Kumaran

Abstract The transformer-less grid connected inverters are gaining more popularity due to their high efficiency, very low ground leakage current and economic feasibility especially in photovoltaic systems. The major issue which surfaces these systems is that of common mode leakage current which arises due to the absence of an electrical transformer connected between the inverter and the utility grid. Several topologies have evolved to reduce the impact of common mode leakage current and a majority of them have succeeded in eliminating the impacts and have well kept them within the limits of grid standards. This paper compares and analyses the impact of the common mode leakage current for four popular inverter configurations through simulation of the topologies such as H5, H6, HERIC and FBZVR inverters.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiming Lin ◽  
Bicheng Lei ◽  
Lingwei Wu ◽  
Pan Mei

In the open-end winding permanent magnet synchronous motor (OEW-PMSM) with common DC link, the common-mode voltage (CMV) will cause leakage current and zero-sequence current, which will lead to the decrease in the system life and efficiency. To solve this problem, the loop characteristics of leakage current and zero-sequence current were analyzed, and the condition for eliminating the leakage current and the zero-sequence current was deduced. Then, the CMV of the voltage vectors for the OEW-PMSM system was calculated, and the appropriate voltage vectors satisfying the conditions were selected to form the control vector sets. Combined with the model predictive torque control (MPTC), a cost function without the weight factor was proposed. The voltage vector sets were predicted by the cost function. The optimal voltage vectors were selected to control the OEW-PMSM, which can eliminate the leakage current and the zero-sequence current caused by the CMV. The effectiveness of the proposed method was verified by the simulation results.


Author(s):  
M. N. H. Khan ◽  
K. J. Ahmad ◽  
M. S. Zahan ◽  
M. N. Hasan

<p class="IEEEAbtract">Solar panels are highly used for electricity generation, which can be gotten through switching-based transformer-less inverters. Hence, grid system with no galvanic-isolation, is taking the peak level in the world, which is effective and delivers power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas on when and as the resulting power gets connected to electronic load installation instead of being tied to the grid. In this paper will be discussed the use of leakage current. Transformer-less inverter topology for exploring the issue of common mode (CMV) voltage development, which can be utilized as a Battery-Equivalent DC Supply after adding on places as when found suitable for such installations.</p>


Sign in / Sign up

Export Citation Format

Share Document