Combination of sliding mode controller and PI controller using fuzzy logic controller

Author(s):  
L.K. Wong ◽  
F.H.F. Leung ◽  
P.K.S. Tam
Author(s):  
Jayshree Bembde

In this paper a bidirectional DC to DC converter is designed by using sliding mode controller and fuzzy logic controller for vehicle to grid system. The vehicle to grid technique is intended to work in both grid to a vehicle battery and vehicle battery to grid applications in vehicle-to-grid scenarios. The two methodologies is verified using MATLAB software. Hardware is made by using a LAUNCHXL-F28377S microcontroller.


Author(s):  
M. Bensaada ◽  
S.Della Krachai ◽  
F. Metehri

This paper provides the design for buck DC-DC converter system using fuzzy logic as well as sliding mode method. Design of fuzzy logic controller will be based on improvement of imperfection of the sliding mode controller, in particular the robustness and response time of the system. The simulation results of both systems using fuzzy logic and sliding mode are shown as well as compared to signify better of the two.


Author(s):  
S. S. Dhami ◽  
S. S. Bhasin ◽  
P. B. Mahapatra

The performance comparison of fuzzy logic control and sliding mode control for position control of a pneumatic actuator for different operative conditions is presented in this article. A virtual model of a pneumatic actuation system is developed using comprehensive mathematical model of the system. A fuzzy logic controller and a sliding mode controller are developed for positioning the piston at different linear displacements for different loading conditions. The virtual model is employed for obtaining the transient and steady state positional response of the pneumatic actuator by implementing the two controllers one by one. The results show that fuzzy controller results in better piston positional response for combinations of lower payloads and smaller linear displacements, whereas sliding mode controller is more effective for combinations of higher payloads and larger displacements.


2019 ◽  
Vol 15 (1) ◽  
pp. 112-116
Author(s):  
Normaisharah Mamat ◽  
Fitri Yakub ◽  
Sheikh Ahmad Zaki Sheikh Salim

Two degree of freedom (2 DOF) mass spring damper system is used in representing as building structure that dealing with the earthquake vibration. The real analytical input is used to the system that taken at El Centro earthquake that occurred in May 1940 with magnitude of 7.1 Mw. Two types of controller are presented in controlling the vibration which are fuzzy logic (FL) and sliding mode controller (SMC). The paper was aimed to improve the performance of building structure towards vibration based on proposed controllers. Fuzzy logic and sliding mode controller are widely known with robustness character. The mathematical model of two degree of freedom mass spring damper wasis derived to obtain the relationship between mass, spring, damper, force and actuator. Fuzzy logic and sliding mode controllers were implemented to 2 DOF system to suppress the earthquake vibration of two storeys building. Matlab/Simulink was used in designing the system and controllers to present the result of two storeys displacement time response and input control voltage for uncontrolled and controlled system. Then the data of earthquake disturbance was taken based on real seismic occurred at El Centro to make it as the force disturbance input to the building structure system. The controllers proposed would minimize the vibration that used in sample earthquake disturbance data. The simulation result was carried out by using Matlab/Simulink. The simulation result showed sliding mode controller was better controller than fuzzy logic. In specific, by using the controller, earthquake vibration can be reduced.


2012 ◽  
Vol 22 (3) ◽  
pp. 315-342 ◽  
Author(s):  
Samir Zeghlache ◽  
Djamel Saigaa ◽  
Kamel Kara ◽  
Abdelghani Harrag ◽  
Abderrahmen Bouguerra

Abstract In this paper we present a new design method for the fight control of an autonomous quadrotor helicopter based on fuzzy sliding mode control using backstepping approach. Due to the underactuated property of the quadrotor helicopter, the controller can move three positions (x;y; z) of the helicopter and the yaw angle to their desired values and stabilize the pitch and roll angles. A first-order nonlinear sliding surface is obtained using the backstepping technique, on which the developed sliding mode controller is based. Mathematical development for the stability and convergence of the system is presented. The main purpose is to eliminate the chattering phenomenon. Thus we have used a fuzzy logic control to generate the hitting control signal. The performances of the nonlinear control method are evaluated by simulation and the results demonstrate the effectiveness of the proposed control strategy for the quadrotor helicopter in vertical flights.


2000 ◽  
Author(s):  
J. Choi ◽  
C. W. de Silva ◽  
V. J. Modi ◽  
A. K. Misra

Abstract This paper focuses a robust and knowledge-based control approach for multi-link robot manipulator systems. Based on the concepts of sliding-mode control and fuzzy logic control (FLC), a fuzzy sliding-mode controller has been developed in previous work. This controller possesses good robustness properties of sliding-mode control and the flexibility and ‘intelligent’ capabilities of knowledge-based control through the use of fuzzy logic. This paper presents experimental studies with fuzzy sliding-mode control as well as conventional sliding-mode control. The results show that the tracking error is guaranteed to converge to a specification in the presence of uncertainties. The performance of the fuzzy sliding-mode controller is found to be somewhat better than that of the conventional sliding-mode controller.


Author(s):  
Rambir Singh ◽  
Asheesh K. Singh ◽  
Rakesh K. Arya

This paper examines the size reduction of the fuzzy rule base without compromising the control characteristics of a fuzzy logic controller (FLC). A 49-rule FLC is approximated by a 4-rule simplest FLC using compensating factors. This approximated 4-rule FLC is implemented to control the shunt active power filter (APF), which is used for harmonic mitigation in source current. The proposed control methodology is less complex and computationally efficient due to significant reduction in the size of rule base. As a result, computational time and memory requirement are also reduced significantly. The control performance and harmonic compensation capability of proposed approximated 4-rule FLC based shunt APF is compared with the conventional PI controller and 49-rule FLC under randomly varying nonlinear loads. The simulation results presented under transient and steady state conditions show that dynamic performance of approximated simplest FLC is better than conventional PI controller and comparable with 49-rule FLC, while maintaining harmonic compensation within limits. Due to its effectiveness and reduced complexity, the proposed approximation methodology emerges out to be a suitable alternative for large rule FLC.


Sign in / Sign up

Export Citation Format

Share Document