Bandwidth Enhancement of Compact Printed Super Wide Band Antenna with Space Filling Slots for Microwave Applications

Author(s):  
N. Suguna ◽  
S. Revathi

Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semielliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.


2015 ◽  
Author(s):  
Mircea Panzariu ◽  
Horia Lupescu ◽  
Ana Dumitrascu ◽  
Razvan D. Tamas

2021 ◽  
Vol 11 (1) ◽  
pp. 6691-6695
Author(s):  
M. S. Karoui ◽  
N. Ghariani ◽  
M. Lahiani ◽  
H. Ghariani

In this paper, a simple method of enhancing the bandwidth of the Bell-shaped UWB Antenna for indoor localization systems is proposed. Therefore, a modified version of the bell-shaped Ultra-Wide Band (UWB) antenna for indoor localization systems is presented. The proposed antenna is printed on a low-cost FR-4 substrate of 21×27×1.6mm3 size. It is composed of a bell-shaped radiating patch and a multi-slotted ground plane. The measured results show that the proposed antenna has an impedance bandwidth of about 11.2GHz ranging from 3.16GHz to 14.36GHz at S11<−10dB. Compared to the original version, an enhancement of about 5.56GHz in the measured impedance bandwidth was observed.


2017 ◽  
Vol 16 ◽  
pp. 33-37 ◽  
Author(s):  
Jing Zhang ◽  
Guoping Ci ◽  
Yajie Cao ◽  
Ning Wang ◽  
Huiping Tian

Author(s):  
Ronak Vashi ◽  
Trushit Upadhyaya ◽  
Arpan Desai

Abstract In this paper, a semi-flexible 2 × 1 array antenna is proposed with epoxy glass fiber and graphene as patch and ground, respectively. Microstrip patch antenna with a center parasitic patch of half-wavelength and slot in the radiating patch have been incorporated for the bandwidth enhancement in order of 79.56% (2.21–5.13 GHz). The antenna has an overall size of 0.30λ × 0.24λ at a lower frequency of operation (2.45 GHz). The incorporation of slotted Graphene in radiating element leads to a wideband regime with satisfactory gain values of 2.73 and 3.744 dBi at 2.40 and 4.0 GHz, respectively. Antenna radiation efficiency in the range of 78% with linear polarization makes the antenna appropriate for WLAN band and smart wireless devices application.


Author(s):  
Amro A. Nour ◽  
Ali Bostani ◽  
Girish Awadhwal

A tapered fork-shaped antenna having small ground for ultra-wide band (UWB) antenna is proposed in this paper. Finite element method has been successfully employed to simulate and optimize the feed line, ground, and tapered fork-shaped diameter to enhance the performance of the antenna in terms of bandwidth obviously for the ultra-wideband purposes. An acceptable impedance matching performance has been achieved, which is a band wider than the UWB band that is defined by the Federal Communications Commission (FCC). In this paper, the detailed design parameters including the key elements in bandwidth enhancement is presented. The results of the finite element simulations have been presented as well indicating the return loss and radiation pattern of the proposed antenna.


Sign in / Sign up

Export Citation Format

Share Document