Cycle Periodic Behavior Detection and Sports Place Extraction Using Crowdsourced Running Trace Data

Author(s):  
Wei Yang ◽  
Wei Lu ◽  
Tinghua Ai ◽  
Tong Zhang
2008 ◽  
Vol 128 (11) ◽  
pp. 1649-1656 ◽  
Author(s):  
Hironobu Satoh ◽  
Fumiaki Takeda ◽  
Yuhki Shiraishi ◽  
Rie Ikeda

1979 ◽  
Vol 7 (1) ◽  
pp. 3-13
Author(s):  
F. C. Brenner ◽  
A. Kondo

Abstract Tread wear data are frequently fitted by a straight line having average groove depth as the ordinate and mileage as the abscissa. The authors have observed that the data points are not randomly scattered about the line but exist in runs of six or seven points above the line followed by the same number below the line. Attempts to correlate these cyclic deviations with climatic data failed. Harmonic content analysis of the data for each individual groove showed strong periodic behavior. Groove 1, a shoulder groove, had two important frequencies at 40 960 and 20 480 km (25 600 and 12 800 miles); Grooves 2 and 3, the inside grooves, had important frequencies at 10 240, 13 760, and 20 480 km (6400, 8600, and 12 800 miles), with Groove 4 being similar. A hypothesis is offered as a possible explanation for the phenomenon.


2020 ◽  
Vol 13 (4) ◽  
pp. 861-877
Author(s):  
John Saint ◽  
Alexander Whitelock-Wainwright ◽  
Dragan Gasevic ◽  
Abelardo Pardo

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1420
Author(s):  
Chuanfu Wang ◽  
Yi Di ◽  
Jianyu Tang ◽  
Jing Shuai ◽  
Yuchen Zhang ◽  
...  

Dynamic degradation occurs when chaotic systems are implemented on digital devices, which seriously threatens the security of chaos-based pseudorandom sequence generators. The chaotic degradation shows complex periodic behavior, which is often ignored by designers and seldom analyzed in theory. Not knowing the exact period of the output sequence is the key problem that affects the application of chaos-based pseudorandom sequence generators. In this paper, two cubic chaotic maps are combined, which have symmetry and reconfigurable form in the digital circuit. The dynamic behavior of the cubic chaotic map and the corresponding digital cubic chaotic map are analyzed respectively, and the reasons for the complex period and weak randomness of output sequences are studied. On this basis, the digital cubic chaotic map is optimized, and the complex periodic behavior is improved. In addition, a reconfigurable pseudorandom sequence generator based on the digital cubic chaotic map is constructed from the point of saving consumption of logical resources. Through theoretical and numerical analysis, the pseudorandom sequence generator solves the complex period and weak randomness of the cubic chaotic map after digitization and makes the output sequence have better performance and less resource consumption, which lays the foundation for applying it to the field of secure communication.


AERA Open ◽  
2021 ◽  
Vol 7 ◽  
pp. 233285842199114
Author(s):  
Sorathan Chaturapruek ◽  
Tobias Dalberg ◽  
Marissa E. Thompson ◽  
Sonia Giebel ◽  
Monique H. Harrison ◽  
...  

Elective curriculums require undergraduates to choose from a large roster of courses for enrollment each term. It has proven difficult to characterize this fateful choice process because it remains largely unobserved. Using digital trace data to observe this process at scale at a private research university, together with qualitative student interviews, we provide a novel empirical study of course consideration as an important component of course selection. Clickstream logs from a course exploration platform used by most undergraduates at the case university reveal that students consider on average nine courses for enrollment for their first fall term (<2% of available courses) and these courses predict which academic major students declare two years later. Twenty-nine interviews confirm that students experience consideration as complex and reveal variation in consideration strategies that may influence how consideration unfolds. Consideration presents a promising site for intervention in problems of equity, career funneling, and college completion.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1635
Author(s):  
Neeraj Chugh ◽  
Geetam Singh Tomar ◽  
Robin Singh Bhadoria ◽  
Neetesh Saxena

To sustain the security services in a Mobile Ad Hoc Networks (MANET), applications in terms of confidentially, authentication, integrity, authorization, key management, and abnormal behavior detection/anomaly detection are significant. The implementation of a sophisticated security mechanism requires a large number of network resources that degrade network performance. In addition, routing protocols designed for MANETs should be energy efficient in order to maximize network performance. In line with this view, this work proposes a new hybrid method called the data-driven zone-based routing protocol (DD-ZRP) for resource-constrained MANETs that incorporate anomaly detection schemes for security and energy awareness using Network Simulator 3. Most of the existing schemes use constant threshold values, which leads to false positive issues in the network. DD-ZRP uses a dynamic threshold to detect anomalies in MANETs. The simulation results show an improved detection ratio and performance for DD-ZRP over existing schemes; the method is substantially better than the prevailing protocols with respect to anomaly detection for security enhancement, energy efficiency, and optimization of available resources.


Sign in / Sign up

Export Citation Format

Share Document