Development of a Awaking Behavior Detection System Using a Neural Network

2008 ◽  
Vol 128 (11) ◽  
pp. 1649-1656 ◽  
Author(s):  
Hironobu Satoh ◽  
Fumiaki Takeda ◽  
Yuhki Shiraishi ◽  
Rie Ikeda
2011 ◽  
Vol 94 (2) ◽  
pp. 42-50
Author(s):  
Hironobu Satoh ◽  
Fumiaki Takeda ◽  
Yuhki Shiraishi ◽  
Rie Ikeda

Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


2021 ◽  
pp. 1-10
Author(s):  
Chien-Cheng Leea ◽  
Zhongjian Gao ◽  
Xiu-Chi Huanga

This paper proposes a Wi-Fi-based indoor human detection system using a deep convolutional neural network. The system detects different human states in various situations, including different environments and propagation paths. The main improvements proposed by the system is that there is no cameras overhead and no sensors are mounted. This system captures useful amplitude information from the channel state information and converts this information into an image-like two-dimensional matrix. Next, the two-dimensional matrix is used as an input to a deep convolutional neural network (CNN) to distinguish human states. In this work, a deep residual network (ResNet) architecture is used to perform human state classification with hierarchical topological feature extraction. Several combinations of datasets for different environments and propagation paths are used in this study. ResNet’s powerful inference simplifies feature extraction and improves the accuracy of human state classification. The experimental results show that the fine-tuned ResNet-18 model has good performance in indoor human detection, including people not present, people still, and people moving. Compared with traditional machine learning using handcrafted features, this method is simple and effective.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2280
Author(s):  
Ching-Chang Wong ◽  
Li-Yu Yeh ◽  
Chih-Cheng Liu ◽  
Chi-Yi Tsai ◽  
Hisasuki Aoyama

In this paper, a manipulation planning method for object re-orientation based on semantic segmentation keypoint detection is proposed for robot manipulator which is able to detect and re-orientate the randomly placed objects to a specified position and pose. There are two main parts: (1) 3D keypoint detection system; and (2) manipulation planning system for object re-orientation. In the 3D keypoint detection system, an RGB-D camera is used to obtain the information of the environment and can generate 3D keypoints of the target object as inputs to represent its corresponding position and pose. This process simplifies the 3D model representation so that the manipulation planning for object re-orientation can be executed in a category-level manner by adding various training data of the object in the training phase. In addition, 3D suction points in both the object’s current and expected poses are also generated as the inputs of the next operation stage. During the next stage, Mask Region-Convolutional Neural Network (Mask R-CNN) algorithm is used for preliminary object detection and object image. The highest confidence index image is selected as the input of the semantic segmentation system in order to classify each pixel in the picture for the corresponding pack unit of the object. In addition, after using a convolutional neural network for semantic segmentation, the Conditional Random Fields (CRFs) method is used to perform several iterations to obtain a more accurate result of object recognition. When the target object is segmented into the pack units of image process, the center position of each pack unit can be obtained. Then, a normal vector of each pack unit’s center points is generated by the depth image information and pose of the object, which can be obtained by connecting the center points of each pack unit. In the manipulation planning system for object re-orientation, the pose of the object and the normal vector of each pack unit are first converted into the working coordinate system of the robot manipulator. Then, according to the current and expected pose of the object, the spherical linear interpolation (Slerp) algorithm is used to generate a series of movements in the workspace for object re-orientation on the robot manipulator. In addition, the pose of the object is adjusted on the z-axis of the object’s geodetic coordinate system based on the image features on the surface of the object, so that the pose of the placed object can approach the desired pose. Finally, a robot manipulator and a vacuum suction cup made by the laboratory are used to verify that the proposed system can indeed complete the planned task of object re-orientation.


2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 834
Author(s):  
Muhammad Ashfaq Khan

Nowadays, network attacks are the most crucial problem of modern society. All networks, from small to large, are vulnerable to network threats. An intrusion detection (ID) system is critical for mitigating and identifying malicious threats in networks. Currently, deep learning (DL) and machine learning (ML) are being applied in different domains, especially information security, for developing effective ID systems. These ID systems are capable of detecting malicious threats automatically and on time. However, malicious threats are occurring and changing continuously, so the network requires a very advanced security solution. Thus, creating an effective and smart ID system is a massive research problem. Various ID datasets are publicly available for ID research. Due to the complex nature of malicious attacks with a constantly changing attack detection mechanism, publicly existing ID datasets must be modified systematically on a regular basis. So, in this paper, a convolutional recurrent neural network (CRNN) is used to create a DL-based hybrid ID framework that predicts and classifies malicious cyberattacks in the network. In the HCRNNIDS, the convolutional neural network (CNN) performs convolution to capture local features, and the recurrent neural network (RNN) captures temporal features to improve the ID system’s performance and prediction. To assess the efficacy of the hybrid convolutional recurrent neural network intrusion detection system (HCRNNIDS), experiments were done on publicly available ID data, specifically the modern and realistic CSE-CIC-DS2018 data. The simulation outcomes prove that the proposed HCRNNIDS substantially outperforms current ID methodologies, attaining a high malicious attack detection rate accuracy of up to 97.75% for CSE-CIC-IDS2018 data with 10-fold cross-validation.


Sign in / Sign up

Export Citation Format

Share Document