scholarly journals A Low-cost, Automated, Portable Mechanical Ventilator for Developing World*

Author(s):  
Saad Pasha ◽  
Eesha Tur Razia Babar ◽  
Jack Schneider ◽  
John Heithaus ◽  
Muhammad Mujeeb-U-Rahman
2021 ◽  
pp. 2000112
Author(s):  
Tom Dillon ◽  
Caglar Ozturk ◽  
Keegan Mendez ◽  
Luca Rosalia ◽  
Samuel Dutra Gollob ◽  
...  

Author(s):  
Matthew L. Cavuto ◽  
Matthew Chun ◽  
Nora Kelsall ◽  
Karl Baranov ◽  
Keriann Durgin ◽  
...  

Transfemoral (above-knee) amputees face a unique and challenging set of restrictions to movement and function. Most notably, they are unable to medially rotate their lower-leg and subsequently cross their legs. The best and most common solution to this issue today is a transfemoral rotator, which allows medial rotation of the leg distal to the knee through a lockable turntable mechanism. However, currently available transfemoral rotators can cost thousands of dollars, and few equivalent technologies exist in the developing world. This paper, supported by the results of field studies and user testing, establishes a framework for the design of a low-cost and easily manufacturable transfemoral rotator for use in the developing world. Two prototypes are presented, each with a unique internal locking mechanism and form. A preliminary field study was conducted on six transfemoral amputees in India and qualitative user and prosthetist feedback was collected. Both prototypes successfully allowed all subjects to complete tasks such as crossing legs, putting on pants, and tying shoes while maintaining functionality of walking and standing. Future iterations of the mechanism will be guided by a combination of the most positively received features of the prototypes and general feedback suggestions from the users.


Blood ◽  
2012 ◽  
Vol 119 (8) ◽  
pp. 1922-1928 ◽  
Author(s):  
Andrew M. Prentice ◽  
Conor P. Doherty ◽  
Steven A. Abrams ◽  
Sharon E. Cox ◽  
Sarah H. Atkinson ◽  
...  

AbstractIron supplementation strategies in the developing world remain controversial because of fears of exacerbating prevalent infectious diseases. Understanding the conditions in which iron will be absorbed and incorporated into erythrocytes is therefore important. We studied Gambian children with either postmalarial or nonmalarial anemia, who were given oral iron supplements daily for 30 days. Supplements administered on days 1 and 15 contained the stable iron isotopes 57Fe and 58Fe, respectively, and erythrocyte incorporation was measured in blood samples drawn 14 days later. We investigated how the iron-regulatory hormone hepcidin and other inflammatory/iron-related indices, all measured on the day of isotope administration, correlated with erythrocyte iron incorporation. In univariate analyses, hepcidin, ferritin, C-reactive protein, and soluble transferrin receptor (sTfR) strongly predicted incorporation of 57Fe given on day 1, while hepcidin, ferritin, and sTfR/log ferritin correlated with 58Fe incorporation. In a final multivariate model, the most consistent predictor of erythrocyte isotope incorporation was hepcidin. We conclude that under conditions of competing signals (anemia, iron deficiency, and infection), hepcidin powerfully controls use of dietary iron. We suggest that low-cost point-of-care hepcidin assays would aid iron supplementation programs in the developing world.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdul Mohsen Al Husseini ◽  
Heon Ju Lee ◽  
Justin Negrete ◽  
Stephen Powelson ◽  
Amelia Tepper Servi ◽  
...  

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional bag-valve mask (BVM) with a pivoting cam arm, eliminating the need for a human operator for the BVM. An initial prototype was built out of acrylic, measuring 11.25×6.7×8 in.3 and weighing 9 lbs. It is driven by an electric motor powered by a 14.8 VDC battery and features an adjustable tidal volume up to a maximum of 750 ml. Tidal volume and number of breaths per minute are set via user-friendly input knobs. The prototype also features an assist-control mode and an alarm to indicate overpressurization of the system. Future iterations of the device will include a controllable inspiration to expiration time ratio, a pressure relief valve, PEEP capabilities, and an LCD screen. With a prototyping cost of only $420, the bulk-manufacturing price for the ventilator is estimated to be less than $200. Through this prototype, the strategy of cam-actuated BVM compression is proven to be a viable option to achieve low-cost, low-power portable ventilator technology that provides essential ventilator features at a fraction of the cost of existing technology.


2009 ◽  
Vol 17 (6) ◽  
pp. 16-19 ◽  
Author(s):  
B. Cline ◽  
R. Luo ◽  
K. Kuhlmann

Many infectious diseases prevalent in the developing world, including malaria and tuberculosis, are difficult to diagnose on the basis of symptoms alone but can be accurately detected using microscope examination. Currently the expense, size, and fragility of optical microscopes impede their widespread use in resource-limited settings. Addressing these obstacles facing microscopy in the developing world is a pressing need; over 800,000 people, primarily children in Africa, die annually of malaria, and more than 1,500,000 people die annually of tuberculosis [1][2]. The aim of this study is to design and validate a microscope for use in the developing world that combines high-resolution imaging, extreme affordability, and long-term durability.


2020 ◽  
Author(s):  
Uri Adrian Prync Flato ◽  
Patricia C. dos Santos ◽  
Fábio Manhoso ◽  
Fernanda Mesquita Serva ◽  
Jeferson Dias ◽  
...  

Abstract Background: The current need for pulmonary mechanical ventilation related to COVID-19 exceeds the ability of health systems worldwide to acquire and produce mechanical ventilators. The major cause of mortality in patients with this disease is hypoxemia secondary to an inflammatory storm in the lungs associated with thrombotic events. A partnership was established between the university and the private engineering and industrial automation sector to concept and design novel a low-cost emergency mechanical ventilator that could be rapidly available for use in emergency, transport or low-resource health care system, and attend the urgent demand of artificial respiratory system that is need worldwide. It was evaluated the viability of oxygenation and pulmonary ventilation with an emergency mechanical ventilation device called 10D-EMV in animal experiments. A two-stage sequential adaptive study was conducted in 10 sheep, divided into group I (PEEP valve close to the device) and group II (PEEP valve distal to the device). Each animal underwent mechanical ventilation for a total of 120 minutes. Results: The mean oxygenation in group I and group II were 368 mmHg and 366 mmHg, respectively, while the mean partial pressure of carbon dioxide was 58 mmHg and 48 mmHg. Conclusion: This study demonstrates the viability of the 10D device as a novel proposed emergency mechanical ventilator, in order to attend the pandemics demand. Further clinical studies in humans are needed to assess its safety and efficacy.


Author(s):  
Ankit D. Bhoyar

Abstract: Mass casualty incidents such as those that are being experienced during the novel coronavirus disease (COVID-19) pandemic can overwhelm local healthcare systems, where the number of casualties exceeds local resources and capabilities in a short period of time. The introduction of patients with worsening lung function as a result of COVID-19 has strained traditional ventilator supplies. Mechanical ventilator is a medical device which is usually utilized to ventilate patients who cannot breathe adequately on their own. Among many types of ventilators Bag Valve Mask (BVM) is a manual ventilator in which a bag is pressed to deliver air into the lungs of the patient. In present work, a mechanical system along with speed controller has been developed to automate the operation of BVM. The constructed prototype contains crank, powered by servo motor, supported by wooden frame. To bridge the gap during ventilator shortages and to help clinicians triage patients, manual resuscitator devices can be used to deliver respirations to a patient requiring breathing support. With principal dimensions of 0.54*0.64 m2 , bvm weighs 0.9 kg and DC power convertor for supplying power for a continuous operation, the prototype can be moved easily. The dimensions of the frame are selected as such to be compatible with the physical dimension of Ambu bag. The performance of the device was tested using Airflow meter which illustrates that the Tidal Volume vs. Time graph of the automated system is similar to the graph produced by manual operation of the BVM, but with a mean deviation of 0.182 Litres with manual operation and 0.1 Litres with prototype. For patients who require ventilatory support, manual ventilation is a vital procedure. It has to be performed by experienced healthcare providers that are regularly trained for the use of bag-valve-mask (BVM) in emergency situations. Keywords: Mechanical Ventilator, Automated BVM, BPM, COVID-19, Ventilator design, Airflow meter


Sign in / Sign up

Export Citation Format

Share Document