Experimental campaign for the characterization of the propagation features on satellite links in the SHF bands

Author(s):  
F. Barbaliscia ◽  
P. Migliorini
2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 151
Author(s):  
Carlo Trigona ◽  
Giovanna Di Pasquale ◽  
Salvatore Graziani ◽  
Antonino Licciulli ◽  
Rossella Nisi ◽  
...  

The need for a sustainable economy necessitates new environmentally friendly production technologies as well as devices that can be easily recycled, disposed of, and, finally, degraded, without any release of pollutants to the environment. In this context, bacterial cellulose (BC) has recently been investigated as an intriguing solution for the creation of green motion sensors. BC has excellent mechanical properties, and it is fully biodegradable and greener than the more common plant-derived cellulose. In this paper, we investigate the influence of geometry and environmental temperature on BC based sensing elements. More specifically, the influence of these quantities on a previously investigated BC-based accelerometer are reported. An experimental campaign and the characterization of the proposed green device for several geometries (from 7 to 22 mm of length) and various temperatures (from 5 °C to 55 °C) is addressed, obtaining very intriguing results.


2017 ◽  
Vol 48 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Mehdi Ghazimoradi ◽  
Valter Carvelli ◽  
Maria Chiara Marchesi ◽  
Roberto Frassine

In this paper, the mechanical properties of different tetraxial fabrics are investigated. Fabrics were produced using an innovative loom capable of weaving four threads at the same time with complete discretion of yarn type and count. The experimental investigation deals with in-plane and out-of-plane mechanical testing of tetraxial fabrics, as well as yarns made of four different materials (polyethylene terephthalate, glass, aramid, and basalt). The digital image correlation technique was used to measure the in-plane strain field for both uniaxial and biaxial tensile tests. The extensive experimental campaign allowed for a complete mechanical characterization of this novel fabric architecture including interlacement of different yarns.


Author(s):  
Liborio Cavaleri ◽  
Maria Giovanna Saccone ◽  
Maurizio Costa ◽  
Calogero Foti ◽  
Giuseppe Basile

At present Agrigento Cathedral is affected by extensive damage that seems to be mainly due to partial slumping of the foundation soil. The chapter deals with the state of damage that affects the cathedral and the investigation carried out for the mechanical characterization of the construction, the formulation of an FE model and the assessment of the safety level with respect to the service loads and with respect to exceptional loads like seismic ones. In the chapter the details of the above investigation are discussed, consideration also being given to the monitoring carried out in order to understand whether the phenomenon affecting the cathedral is ongoing. The results of the monitoring and the experimental campaign on the structural members are described, revealing an unexpectedly low capacity with respect to service loads. Then a comparison is carried out between the response of the FE model and the experimental observations for the identification of the causes of distress. Finally possible action is discussed.


2021 ◽  
Vol 898 ◽  
pp. 43-48
Author(s):  
Claudia Brito de Carvalho Bello ◽  
Daniele Baraldi ◽  
Antonella Cecchi ◽  
Daniel V. Oliveira

In the last years, the interest in eco-sustainable composites has consistently increased. Such innovative materials are actually a promising sustainable solution for structural strengthening since they can be an alternative to petroleum‐based materials, which are frequently used for masonry retrofitting. This work describes an experimental campaign dedicated to investigating the behavior of Fabric-Reinforced Cementitious Matrix (FRCM) with natural fibers (NFRCM) made with eco-sustainable materials. Experimental tests are performed on unreinforced masonry panels (URM) and reinforced ones (RM), for characterizing their mechanical behavior. URM samples are compared with RM ones accounting for their response under shear actions.


2020 ◽  
Vol 8 (8) ◽  
pp. 556 ◽  
Author(s):  
Corrado Altomare ◽  
Xavi Gironella ◽  
Tomohiro Suzuki ◽  
Giacomo Viccione ◽  
Alessandra Saponieri

Design criteria for coastal defenses exposed to wave overtopping are usually assessed by mean overtopping discharges and maximum individual overtopping volumes. However, it is often difficult to give clear and precise limits of tolerable overtopping for all kinds of layouts. A few studies analyzed the relationship between wave overtopping flows and hazard levels for people on sea dikes, confirming that one single value of admissible mean discharge or individual overtopping volume is not a sufficient indicator of the hazard, but detailed characterization of flow velocities and depths is required. This work presents the results of an experimental campaign aiming at analyzing the validity of the safety limits and design criteria for overtopping discharge applied to an urbanized stretch of the Catalan coast, exposed to significant overtopping events every stormy season. The work compares different safety criteria for pedestrians. The results prove that the safety of pedestrians on a sea dike can be still guaranteed, even for overtopping volumes larger than 1,000 L/m. Sea storms characterized by deep-water wave height between 3.6 and 4.5 m lead to overtopping flow depth values larger than 1 m and flow velocities up to 20 m/s. However, pedestrian hazard is proved to be linked to the combination of overtopping flow velocity and flow depth rather than to single maximum values of one of these parameters. The use of stability curves to assess people’s stability under overtopping waves is therefore advised.


Author(s):  
Martina Aguiari ◽  
Marco Palombo ◽  
Cesare Mario Rizzo

Abstract Although in the last decades the applicable regulations for the design of steel structures have been deeply improved accounting for modern design approaches and technologies, in a few industrial fields, concepts and formulations derived from centuries-old experience are even nowadays the governing rule. This very often limits the potential offered by the technological innovations in high-performance material, such as quenched and tempered (QT) steels. After having verified in the scientific literature, in the commercial one and in several open material databases that some main data necessary to the comprehensive characterization of QT steel used in building large metal structures are lacking, an extensive experimental campaign was undertaken to achieve an updated and specific fatigue strength characterization for certain types of materials. The aim is to overcome the strict requirements of current regulations on the application of both parent QT materials and welded homogeneous and heterogeneous joints between different steel strength. The experimental campaign allowed filling the knowledge gap as well as providing further understanding whether the use of high-strength steel is effective in the improvement of performances of large steel structures, whose fabrication procedures are typical of building sites rather than workshops. Their extensive application in current building practice is expected to be highly beneficial in terms of weight and costs.


Author(s):  
Enrico Deri ◽  
Matteo Bucci ◽  
Etienne Studer ◽  
Daniele Abdo

In case of severe accident, complex thermal-hydraulics phenomena are expected to occur in the containment atmosphere. To investigate and understand these phenomena, fundamental for nuclear safety and design, major efforts are being spent all over the world. A new OECD project, named SETH-2, is conceived to generate relevant experimental data, useful to improve the modeling capabilities of the computer codes aimed to predict post-accident containment thermal-hydraulic conditions. The Commissariat a` l’Energie Atomique (CEA) contributes to the project performing experiments within the large scale MISTRA facility. Tests are proposed to investigate mixing phenomena promoted in a stratified containment. In particular, one of these test series concerns the interaction of buoyant jets with a stratified atmosphere. The present work is aimed to develop and validate computational tools useful to support the design of this experimental campaign and to analyze the actual MISTRA tests. In this aim, two different models have been implemented for turbulent buoyant jets in a stratified atmosphere: an engineering analytical model for a fast characterization of flow structures and a finite elements computational fluid dynamics (CFD) model that allows a detailed analysis of local phenomena. The models have been successfully validated for vertical buoyant jets in uniform atmosphere. Further experimental and numerical activities are illustrated, aimed to carry out the validation with stratified atmosphere and inclined injections.


Sign in / Sign up

Export Citation Format

Share Document